Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-08T05:17:29.275Z Has data issue: false hasContentIssue false

Synthesis and stabilities of the basic copper(II) chlorides atacamite, paratacamite and botallackite

Published online by Cambridge University Press:  05 July 2018

A. M. Pollard
Affiliation:
School of Chemistry and Applied Chemistry, University of Wales College of Cardiff, P.O. Box 912, Cardiff CF1 3TB
R. G. Thomas
Affiliation:
School of Chemistry and Applied Chemistry, University of Wales College of Cardiff, P.O. Box 912, Cardiff CF1 3TB
P. A. Williams
Affiliation:
School of Chemistry and Applied Chemistry, University of Wales College of Cardiff, P.O. Box 912, Cardiff CF1 3TB

Abstract

Strictly reproducible syntheses of the trimorphs of composition Cu2Cl(OH)3, atacamite, paratacamite, and botallackite, have been developed. In syntheses involving direct precipitation, or reaction of aqueous solutions with solid phases, reliable results are obtained only if the temperature and time of reaction are carefully controlled. Botallackite, the rarest of the naturally occurring trimorphs, is a key intermediate and crystallizes first under most conditions; subsequent recrystallization of this phase to atacamite or paratacamite, or of the latter from the former, depends upon the precise nature of the reaction medium. The crystallization sequence indicates that paratacamite, as has long been suspected, is the thermodynamically stable phase at ambient temperatures. Spertiniite, Cu(OH)2, can be reproducibly synthesized via one route in the non-commutative titration of aqueous copper chloride with aqueous sodium hydroxide solutions.

Type
Non-silicate Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bandy, M. C. (1938) Am. Mineral. 23, 669.Google Scholar
Barton, P. B. and Bethke, P. M. (1960) Am. J. Sci. 258A, 21.Google Scholar
Church, A. H. (1865) J. Chem. Soc. 18, 212.CrossRefGoogle Scholar
Embrey, P. G. (1957) British J. Appl. Phys. 8, 433.Google Scholar
Feitknecht, W. and Maget, K. (1949) Helvetica Chim. Acta. 32, 1639.CrossRefGoogle Scholar
Fleet, M. E. (1975) Acta Crystallogr. A24, 321.Google Scholar
Frondel, C. (1950) Mineral. Mag. 29, 34.Google Scholar
Garrels, R. M. and Dreyer, R. M. (1952) Geol. Soc. Am. Bull. 63, 325.CrossRefGoogle Scholar
Garrels, R. M. and Stine, L. O. (1948) Econ. Geol. 43, 21.CrossRefGoogle Scholar
Gettens, R. J. and Frondel, C. (1956) Studies in Conservation 2, 64.Google Scholar
Grice, J. D. and Gasparrini, E. (1981) Can. Mineral. 19, 337.Google Scholar
Hawthorne, F. C. (1985) Mineral. Mag, 49, 87.CrossRefGoogle Scholar
King, L. C. and Cooper, M. (1965) J. Chem. Educ. 42, 464.CrossRefGoogle Scholar
Kingsbury, A. W. G. (1964) In Present Views of Some Aspects of the Geology of Cornwall and Devon (Hosking, K. F. G. and Dhrimpton, G. J., eds.) R. Geol. Soc., Cornwall, Penzance, 150th Anniv. Vol.Google Scholar
Long, D. T. and Angino, E. E. (1977) Geochim. Cosmochim. Acta 41, 1183.CrossRefGoogle Scholar
Naumov, G. B., Ryzhenko, B. N. and Khodakovsky, I. L. (1974) Handbook of Thermodynamic Data U.S. Dept. Commerce, Natl. Inf. Service, Washington, Pub. PB-226 722.Google Scholar
Oswald, H. R. and Feitknecht, W. (1964) Helvetica Chim. Acta 47, 272.CrossRefGoogle Scholar
Palache, C., Berman, H. and Frondel, C. (1951) The System of Mineralogy 2, John Wiley & Sons, New York.Google Scholar
Perrin, D. D. and Sayce, I. G. (1967) Talanta 14, 833.CrossRefGoogle Scholar
Schnorrer-Kohler, G., Standfuss, K. and Standfuss, L. (1982) Aufschluss 33, 3.Google Scholar
Sharkey, J. B., and Lewin, S. Z. (1971) Am. Mineral. 56, 179.Google Scholar
Sharkey, J. B., and Lewin, S. Z. (1972) Thermochim. Acta 3, 189.CrossRefGoogle Scholar
Smith, R. M. and Martell, A. E. (1976) Critical Stability Constants 4, Plenum Press, New York.CrossRefGoogle Scholar
Tennant, N. H. and Antonio, K. M. (1981) ICOM Committee for Conservation, 6th Triennial Meeting, Ottawa, paper 81/23/3.Google Scholar
Turner, D. R., Whitfield, M. and Dickson, A. G. (1981) Geochim. Cosmochim. Acta 45, 855.CrossRefGoogle Scholar
Voronova, A. A. and Vainshtein, B. K. (1958) Soy. Phys. Crystallogr. 3, 445.Google Scholar
Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., Halow, I., Bailey, S. M., Churney, K. L. and Nuttall, R. L. (1982) J. Phys. Chem. Ref. Data 11, Suppl. 2, 392pp.Google Scholar
Walter-Levy, L. and Goreaud, M. (1969) Bull. Soc. Chim. France 8, 2623.Google Scholar
Wells, A. F. (1949) Acta Crystallogr. 2, 175.CrossRefGoogle Scholar
White, A. D. (1986) School Sci. Rev. 67, 557.Google Scholar
Woods, T. L. and Garrels, R. M. (1986a) Econ. Geol. 81, 1989.CrossRefGoogle Scholar
Woods, T. L. and Garrels, R. M. (1986b) Appl. Geochemistry 1, 181.CrossRefGoogle Scholar