Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T05:00:58.019Z Has data issue: false hasContentIssue false

Synthesis and crystal structure of C2/c Ca(Co,Mg)Si2O6 pyroxenes: effect of the cation substitution on cell volume

Published online by Cambridge University Press:  02 January 2018

C. Gori*
Affiliation:
Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale. Plesso di Scienze Geologiche, Università degli Studi di Parma, Parco Area delle Scienze 157/A, 43124, Parma, Italy
M. Tribaudino
Affiliation:
Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale. Plesso di Scienze Geologiche, Università degli Studi di Parma, Parco Area delle Scienze 157/A, 43124, Parma, Italy
L. Mantovani
Affiliation:
Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale. Plesso di Scienze Geologiche, Università degli Studi di Parma, Parco Area delle Scienze 157/A, 43124, Parma, Italy
G. D. Gatta
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Botticelli 23, I-20133 Milano, Italy
D. Delmonte
Affiliation:
Istituto dei Materiali per l’Elettronica ed il Magnetismo-Consiglio Nazionale delle Ricerche (IMEM-CNR), 43124 Parma, Italy
E. Gilioli
Affiliation:
Istituto dei Materiali per l’Elettronica ed il Magnetismo-Consiglio Nazionale delle Ricerche (IMEM-CNR), 43124 Parma, Italy
F. Mezzadri
Affiliation:
Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale. Plesso di Chimica, Università degli Studi di Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
G. Calestani
Affiliation:
Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale. Plesso di Chimica, Università degli Studi di Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
*

Abstract

A series of clinopyroxenes along the CaMgSi2O6–CaCoSi2O6 join was synthesized by quenching from melts at 1500°C and subsequent annealing at 1250°C (at 0.0001 GPa). This protocol proved to be the most effective to obtain homogenous, impurity-free and stoichiometric pyroxenes. Electron microprobe analyses in energy dispersive mode were conducted and single-crystal X-ray diffraction data were collected on Ca (CoxMg1-x)Si2O6 pyroxenes with x = 0.2, 0.4, 0.5, 0.6. Effects of cation substitution at the M1 site are described. The experimental findings of this study allow us to extend the comparative analysis of the structural features of pyroxenes with divalent cations at the M1 and M2 sites.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bruno, E., Carbonin, S. and Molin, G.M. (1982) Crystal structure of Ca-rich clinopyroxenes on the CaMgSi2O6–Mg2Si2O6 join. Tschermaks Mineralogische und Petrographische Mitteilungen, 29, 223240.CrossRefGoogle Scholar
Burnham, C.W., Clark, J.R., Papike, J.J. and Prewitt, C.T. (1967) A proposed crystallographic nomenclature for clinopyroxene structures. Zeitschrift für Kristallographie, CrystallineMaterials, 125, 109119.CrossRefGoogle Scholar
Cameron, M., Sueno, S., Prewitt, C.T. and Papike, J.J. (1973) High-temperature crystal chemistry of acmite, diopside, hedenbergite, jadeite, spodumene and ureyte. American Mineralogist, 58, 594618.Google Scholar
Durand, G., Vilminot, S., Rabu, P., Derory, A., Lambour, J.P. and Ressouche, E. (1996) Synthesis, structure, and magnetic properties of CaMSi2O6 (M = Co, Ni) compounds and their solid solutions. Journal of Solid State Chemistry, 124, 374380.CrossRefGoogle Scholar
Farrugia, L.J. (1999) WinGX suite for small-molecule single-crystal crystallography. Journal of Applied Crystallography, 32, 837838.CrossRefGoogle Scholar
Ghomi, H., Fathi, M.H. and Edris, H. (2012) Fabrication and characterization of triple nanobioceramic composite foam. Journal of Composite Materials, 46, 18091817.CrossRefGoogle Scholar
Ghose, S., Wan, C. and Okamura, F.P. (1987) Crystal structures of CaNiSi2O6 and CaCoSi2O6 and some crystal-chemical relations in C2/c clinopyroxenes. American Mineralogist, 72, 375381.Google Scholar
Gori, C., Tribaudino, M., Mantovani, L., Delmonte, D., Mezzadri, F., Gilioli, E. and Calestani, G. (2015) Ca-Zn solid solutions in C2/c pyroxenes: synthesis, crystal structure, and implications for Zn geochemistry. American Mineralogist, 100, 22092218.CrossRefGoogle Scholar
Jodlauk, S., Becker, P., Mydosh, J.A., Khomskii, D.I., Lorenz, T., Streltsov, S.V., Hezel, D.C. and Bohatý, L. (2007) Pyroxenes: a new class of multiferroics. Journal of Physics: Condensed Matter, 19, 432201.Google Scholar
Karamiana, E., Khandan, A., Rafiee, N. and Eslami, M. (2014) Synthesis of nano-crystallite diopside by mechanical activation to use medical applications. Abstract, 5th International Conference on Nanostructures (ICNS5) 6-9 March 2014, Kish Island, Iran, Sharif University of Technology, page 47, Abstract BIO-077.Google Scholar
Mantovani, L., Tribaudino, M., Mezzadri, F., Calestani, G. and Bromiley, G. (2013) The structure of (Ca,Co) CoSi2O6 pyroxenes and the Ca-M2+ substitution in (Ca,M2+)M2+Si2O6 pyroxenes (M2+ = Co, Fe, Mg). American Mineralogist, 98, 12411252.CrossRefGoogle Scholar
Mantovani, L., Tribaudino, M., Bertoni, G., Salviati, G. and Bromiley, G. (2014) Solid solutions and phase transitions in (Ca,M2+)M2+Si2O6 pyroxenes (M2+ = Co, Fe, Mg). American Mineralogist, 99, 704711.CrossRefGoogle Scholar
Mantovani, L., Tribaudino, M., Dondi, M. and Zanelli, C. (2015) Synthesis and color performance of CaCoSi2O6 pyroxene, a new ceramic colorant. Dyes and Pigments, 120, 118125.CrossRefGoogle Scholar
Momma, K. and Izumi, F. (2008) VESTA: a threedimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 41, 653658.CrossRefGoogle Scholar
Nestola, F., Ballaran, T.B., Tribaudino, M. and Ohashi, H. (2005) Compressional behaviour of CaNiSi2O6 clinopyroxene: bulk modulus systematic and cation type in clinopyroxenes. Physics and Chemistry of Minerals, 32, 222227.CrossRefGoogle Scholar
Nestola, F., Tribaudino, M., Boffa Ballaran, T., Liebske, C. and Bruno, M. (2007) The crystal structure of pyroxenes along the jadeite-hedenbergite and jadeiteaegirine joins. American Mineralogist, 92, 14921501.CrossRefGoogle Scholar
Nestola, F., Boffa Ballaran, T., Angel, R.J., Zhao, J. and Ohashi, H. (2010) High-pressure behavior of Ca/Na clinopyroxenes: The effect of divalent and trivalent 3d-transition elements. American Mineralogist, 95, 832838.CrossRefGoogle Scholar
Ohashi, Y., Burnham, C.W. and Finger, LW. (1975) Effect of Ca-Fe substitution on clinopyroxene crystal structure. American Mineralogist, 60, 423434.Google Scholar
Pandolfo, F., Cámara, F., Domeneghetti, M.C., Alvaro, M., Nestola, F., Karato, S.I. and Amulele, G. (2015) Volume thermal expansion along the jadeite–diopside join. Physics and Chemistry of Minerals, 42, 114.CrossRefGoogle Scholar
Raudsepp, M., Hawthorne, F.C. and Turnock, A.C. (1990) Evaluation of the Rietveld method for the characterization of fine-grained products of mineral synthesis: the diopside-hedenbergite join. The Canadian Mineralogist, 28, 93109.Google Scholar
Redhammer, G.J., Roth, G., Senyshyn, A., Tippelt, G. and Pietzonka, C. (2013) Crystal and magnetic spin structure of germanium-hedenbergite, CaFeGe2O6, and a comparison with other magnetic/magnetoelectric/ multiferroic pyroxenes Zeitschrift für Kristallographie, 228, 140150.Google Scholar
Redhammer, G.J., Roth, G., Treutmann, W., Paulus, W., Andre, G., Pietzonka, C. and Amthauer, G. (2008) Magnetic ordering and spin structure in Ca-bearing clinopyroxenes CaM2+(Si, Ge)2O6, M = Fe, Ni, Co, Mn. Journal of Solid State Chemistry, 181, 31633176.CrossRefGoogle Scholar
Redhammer, G.J., Roth, G., Treutmann, W., Hoelzel, M., Paulus, W., Andre, G., Pietzonka, C. and Amthauer, G. (2009) The magnetic structure of clinopyroxene-type LiFeGe2O6 and revised data on multiferroic LiFeSi2O6 . Journal of Solid State Chemistry, 182, 23742384.CrossRefGoogle Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172, 567570.CrossRefGoogle ScholarPubMed
Rossi, G., Oberti, R., Dal Negro, A., Molin, G.M. and Mellini, M. (1987) Residual electron density of theM2 site in C2/c clinopyroxenes relationship with bulk chemistry and sub-solidus evolution. Physics and Chemistry of Minerals, 14, 514520.CrossRefGoogle Scholar
Shannon, R.D. and Prewitt, C.T. (1970) Revised values of effective ionic radii. Acta Crystallographica, B26, 10461048.CrossRefGoogle Scholar
Sheldrick, G.M. (1996) SADABS, Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen, Göttingen, Germany.Google Scholar
Sheldrick, G.M. (1997) SHELXL-97, Program for Crystal Structure Analysis. University of Göttingen, Göttingen, Germany.Google Scholar
Tabira, Y., Ishizawa, N. and Marumo, F. (1993) Cobalt atoms at M(2) site in C2/c clinopyroxenes of the system CaMgSi2O6 (Di)–CaCoSi2O6 (CaCoPx). Mineralogical Journal, 16, 225245.CrossRefGoogle Scholar
Tribaudino, M. and Mantovani, L. (2014) Thermal expansion in C2/c pyroxenes: a review and new high-temperature structural data for a pyroxene of composition (Na0.53Ca0.47)(Al0.53Fe0.47) Si2O6 (Jd53Hd47). Mineralogical Magazine, 78, 311324.CrossRefGoogle Scholar
Tribaudino, M., Nestola, F. and Meneghini, C. (2005) Rietveld refinement of clinopyroxenes with intermediate Ca-content along the join diopside-enstatite. The Canadian Mineralogist, 43, 14111421.CrossRefGoogle Scholar
White, B.W., McCarthy, G.J. and Scheetz, B.E. (1971) Optical spectra of chromium, nickel, and cobalt–containing pyroxenes. American Mineralogist, 56, 7289.Google Scholar
Supplementary material: File

Gori et al. supplementary material

CIF

Download Gori et al. supplementary material(File)
File 250.1 KB