Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-24T08:32:25.816Z Has data issue: false hasContentIssue false

Studies of the orthoamphiboles. IV. Mössbauer spectra of anthophyllites and gedrites

Published online by Cambridge University Press:  05 July 2018

Anthony D. Law*
Affiliation:
Department of Earth Sciences, University of Oxford, Parks Road, Oxford OX13PR

Abstract

Fitted Mössbauer spectra are presented for a set of anthophyllites and gedrites. Despite their complexity it is possible to obtain fits for gedrite spectra and the Mössbauer parameters are consistent with results for anthophyllites from this and previous studies. At least three doublets are required to fit the Fe2+ absorption in gedrites; there is no single model at present to explain the behaviour of the spectra. Fe3+ absorption is also resolved.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: BP Exploration Company Ltd., Britannic House, Moor Lane, London EC2Y 9BU.

References

Bancroft, G. M., Maddock, A. G., Burns, R. G. and Strens, R. G. J. (1966) Cation distribution in anthophyllite from Mössbauer and infrared spectroscopy. Nature 212, 913-5.CrossRefGoogle Scholar
Bancroft, G. M., Maddock, A. G., Burns, R. G. and Strens, R. G. J. (1967) Application of the Mössbauer effect to silicate mineralogy. I: iron silicates of known crystal structure. Geochim. Cosmochim. Acta 31, 2219-46.CrossRefGoogle Scholar
Burns, R. G. (1972) Mixed valencies and site occupancies of iron in silicate minerals from Mössbauer spectroscopy. Can. J. Spectroscopy 17, 51-9.Google Scholar
Burns, R. G. and Greaves, C. (1971) Correlation of infrared and Mössbauer site population measurements of actinolites. Am. Mineral. 56, 2010-33.Google Scholar
Cloizeaux, des (1877) Sur une nouvelle anthophyllite de Bamle, en Norvège. C.R. Acad. Sci. Paris 84, 1473-5.Google Scholar
Dollase, W. A. and Gustafson, W. I. (1982). 57Fe Mössbauer spectral analysis of the sodic clinopyroxenes. Am. Mineral. 67, 311-27.Google Scholar
Dyar, M. D. (1984) Precision and interlaboratory reproducibility of measurements of the Mössbauer effect in minerals. Ibid. 69, 1127-44.Google Scholar
Eskola, P. (1936) with Kervinen, T. A paragenesis of gedrite and cummingtonite from Isop/ia in Kalvola, Finland. Bull. Comm. G∼ol. Finlande 115, 475-87.Google Scholar
Evans, M. J. and Black, P. J. (1970) The Voigt profile of Mössbauer transmission spectra. J. Phys. C 3, 2167-77.CrossRefGoogle Scholar
Fabries, J. and Perseil, E. A. (1971) NouveUes observations sur les amphiboles orthorhombiques. Bull. Soc. fr. Mineral Crystallogr. 94, 385-95.Google Scholar
Finger, L. W. (1969) Refinement of the crystal structure of an anthophyllite. Ann. Rep. Geophys. Lab. Washington pp. 283.Google Scholar
Hawthorne, F. C. (1983a) Quantitative characterization of site occupancies in minerals. Am. Mineral. 68, 287-306.Google Scholar
Hawthorne, F. C. (1983b) The crystal chemistry of the amphiboles. Can. Mineral. 21, 173-480.Google Scholar
Hawthorne, F. C. (1988) Mössbauer Spectroscopy. In ‘Spectroscopic methods in Mineralogy and Geology’ (Hawthorne, F. C., ed., Reviews in Mineralogy 18, 255-340.CrossRefGoogle Scholar
Hawthorne, F. C. and Waychunas, G. A. (1988) Spectrum-fitting methods. Ibid. Reviews in Mineralogy 18, 63-98.Google Scholar
Irusteta, M. C. and Whittaker, E. J. W. (1975) A three-dimensional refinement of the structure of holmquistite. Acta Crystallogr. B31, 145-50.CrossRefGoogle Scholar
Iskyul, V. (1925) Experimental investigations in the province of the chemical composition of the silicates. See. Mineral. Abstr. 2,207.Google Scholar
Kendall, M. G. and Stuart, A. (1962) Advanced theory of statistics. London, Griffin (5th ed.).Google Scholar
Kunitz, W. (1930) Die Isomorphierverhaltnisse in der Hornbtende-Gruppe. Neues Jahrb. Mineral. Abh. 60, 171-250.Google Scholar
Law, A. D. (1973) Critical evaluation of statistical ‘best fits’ to Mössbauer spectra. Am. Mineral. 58, 128-31.Google Scholar
Law, A. D. (1981) Studies of the Orthoamphiboles. If: Hydroxyl spectra of anthophyUites. Bull. Mindral. 104, 423-30.CrossRefGoogle Scholar
Law, A. D. (1982) Studies of the orthoamphiboles. III: Hydroxyl spectra of gedrites. Mineral. Mag. 45, 63-71.CrossRefGoogle Scholar
Law, A. D. and Whittaker, E. J. W. (1981) Studies of the orthoamphiboles, h The Mössbauer and infrared spectra of holmquistite. Bull. Mineral. 104, 381-6.Google Scholar
Papike, J. J. and Ross, M. (1970) Gedrites: crystal structures and intracrystalline cation distributions. Am. Mineral. 55, 1945-72.Google Scholar
Pisani, F. (1877) Description de plusieurs minéraux. C.R. Acad. Sci. Paris 84, 150-12.Google Scholar
Rabbit, J. C. (1948) A new study of the anthophyllite series. Am. Mineral. 33, 263-323.Google Scholar
Robinson, P. and Jaffe, H. W. (1969) Aluminous enclaves in gedrite-cordierite gneiss from Southwestern New Hampshire. Am. J. Sci. 267, 389-421.CrossRefGoogle Scholar
Seifert, F. (1977) Compositional dependence of the hyperfine interaction of 57Fe in anthophyllite. Phys. Chem. Minerals 1, 43-52.CrossRefGoogle Scholar
Seifert, F. and Virgo, D. (1974) Temperature dependence of intracrystalline Fe2+-Mg distribution in a natural anthophyllite. Carnegie Inst. Washington Yearb. 73, 405-11.Google Scholar
Seki, Y. and Yamasaki, M. (1957) Aluminian ferroanthophyllite from the Kitakami mountainland, northeastern Japan. Am. Mineral. 42, 506-20.Google Scholar
Simpson, E. S. (1931) Contributions to the mineralogy of Western Australia. Series VI. J. Royal Soc. West. Austral. 17, 13749.Google Scholar
Spear, F. S. (1980) The gedrite-anthopbyllite solvus and the composition limits of orthoamphibole from the Post Pond Volcanics, Vermont. Am. Mineral. 65, 1103-18.Google Scholar
Squires, G. L. (1968) Practical Physics. McGraw-Hill.Google Scholar
Stevens, J. G. and Preston, R. S. (1970) Useful information for 57Fe Mössbauer spectroscopy. I. Mössbauer effect Data Index, Appendix G, 16.Google Scholar
Stone, A. J. (1967) Least Squares fitting of Mössbauer spectra. Appendix to Bancroft, G. M., Maddock, A. G., Ong, W. K., Prince, R. H. and Stone, A. J., Mössbauer Spectra of Iron(III) diketone complexes. J. Chem. Soc. A, 1971.Google Scholar
Tilley, C. E. (1957) Paragenisis of anthophyllite and hornblende from the Bancroft area, Ontario. Am. Mineral. 42, 412-16.Google Scholar
Waychunas, G. A. (1986) Performance and use of Mössbauer goodness-of-fit parameters: response to spectra of varying signal/noise ratio and possible misinterpretations. Ibid. 71, 1261-5.Google Scholar
Whittaker, E. J. W. (1960) The crystal chemistry of the amphiboles. Acta CrystaUogr. 13, 291-8.CrossRefGoogle Scholar
Whittaker, E. J. W. (1971) Madelung energies and site preferences in amphiboles I. Am. Mineral. 56, 980-96.Google Scholar
Williams, P. G. L., Bancroft, G. M., Brown, M. G. and Turnock, A. C. (1971) Anomalous Mössbauer spectra of C2/c clinopyroxenes. Nature Phys. Sci. 230, 149-51.CrossRefGoogle Scholar