Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T16:07:02.142Z Has data issue: false hasContentIssue false

Structure refinement and crystal chemistry of tokkoite and tinaksite from the Murun massif (Russia)

Published online by Cambridge University Press:  02 January 2018

M. Lacalamita
Affiliation:
Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari “Aldo Moro”, via E. Orabona 4, I-70125 Bari, Italy
E. Mesto
Affiliation:
Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari “Aldo Moro”, via E. Orabona 4, I-70125 Bari, Italy
E. Kaneva
Affiliation:
Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk-33, Russia 664033
F. Scordari
Affiliation:
Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari “Aldo Moro”, via E. Orabona 4, I-70125 Bari, Italy
G. Pedrazzi
Affiliation:
Dipartimento di Neuroscienze, Università di Parma, via Volturno 39, I-43100, Parma, Italy
N. Vladykin
Affiliation:
Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk-33, Russia 664033
E. Schingaro*
Affiliation:
Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari “Aldo Moro”, via E. Orabona 4, I-70125 Bari, Italy
*

Abstract

The structures of tokkoite, K2Ca4[Si7O18OH](OH,F) and tinaksite, K2Ca2NaTi[Si7O18OH]O from the Murun massif (Russia) were refined from single-crystal X-ray diffraction data in the triclinic space group P1̄. Average crystallographic data are a ≈ 10.423, b ≈ 12.477, c ≈ 7.112 Å, α ≈ 89.92°, β ≈ 99.68°, γ ≈ 92.97°, V ≈ 910.5 Å3 for tokkoite; a ≈ 10.373, b ≈ 12.176, c ≈ 7.057 Å, α ≈ 90.82°, β ≈ 99.22°, γ ≈ 92.80°, V ≈ 878.5 Å3 for tinaksite. The substantial similarities between the geometrical parameters of the tokkoite and tinaksite structures led us to conclude that the two minerals are isostructural. However, major differences of tokkoite with respect to tinaksite are larger lattice constants, especially concerning the b parameter, longer <M–O> distances, especially <M1–O>; larger values of the M1–M3 and O20–O2 bond lengths, and a stronger distortion of the M1 polyhedron. Mössbauer analysis showed that significant trivalent iron is present, VIFe3+ 40.0(7)% in tokkoite and 12.8(3)% in tinaksite. It is confirmed that 2Ca(M1+M2)2+ + (F,OH)(O20)↔ Ti(M1)4+ + Na(M2)+ + O(O20) is the exchange reaction that describes the relation between tokkoite and tinaksite. In addition, this exchange reaction causes local stress involving mainly the M1 site and its interaction with the M2 and M3 sites.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Betteridge, P.W., Carruthers, J.R., Cooper, R.I., Prout, K. and Watkin, D.J. (2003) Crystals version 12: software for guided crystal structure analysis. Journal of Applied Crystallography, 36, 1487.CrossRefGoogle Scholar
Bissert, G. (1980) Verfeinerung der struktur von tinaksit, Ca2K2NaTiO[Si7O18(OH)]. Acta Crystallographica, B36, 259263.CrossRefGoogle Scholar
Brown, I.D. (2002) Topology and chemistry. Structural Chemistry, 13, 339355.CrossRefGoogle Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244247.CrossRefGoogle Scholar
Bruker (2007) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Bruker (2009) SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Dyar, M.D., Agresti, D.G., Schaefer, M.W., Grant, C.A. and Sklute, E.C. (2006) Mössbauer spectroscopy of earth and planetary materials. Annual Review of Earth and Planetary Sciences, 34, 83125.CrossRefGoogle Scholar
Ferraris, G. and Ivaldi, G. (1988) Bond valence vs bond length in O'O hydrogen bonds. Acta Crystallographica, B44, 341344.CrossRefGoogle Scholar
Hawthorne, F.C., Ungaretti, L. and Oberti, R. (1995) Site populations in minerals: terminology and presentation of results of crystal-structure refinement. The Canadian Mineralogist, 33, 907911.Google Scholar
Konev, A.A., Reznitsky, L.S., Feoktistov, G.D., Sapozhnikov, A.N., Koneva, A.A., Sklyarov, E.V., Vorobyev, E.I., Ivanov, V.G. and Ushchapovsaya, Z.F. (2001) New and rare-occurring minerals. In: Mineralogy of East Siberia: State of the Art on the Threshold of the XXI Century (A. A. Konev, editor). Intermet Engineering, Moscow, Pp. 240 [in Russian].Google Scholar
Kostyleva-Labuntsova, E.E., Borutzky, B.E., Sokolova, M.N., Shlyukova, Z.V., Dorfman, M.D., Dudkin, O.B. and Kozyreva, L.V. and Ikorskii, S.V. (1978) Mineralogy of Khibiny Massif. vol. 1. Nauka, Moscow, pp. 228.Google Scholar
Lacalamita, M., Schingaro, E., Scordari, F., Ventruti, G., Fabbrizio, A. and Pedrazzi, G. (2011) Substitution mechanisms and implications for the estimate of water fugacity for Ti-rich phlogopite from Mt. Vulture (Potenza, Italy). American Mineralogist, 96, 13811391.CrossRefGoogle Scholar
Lacalamita, M., Mesto, E., Scordari, F and Schingaro, E. (2012) Chemical and structural study of 1M- and 2M1-phlogopites coexisting in the same Kasenyi kamafu-gitic rock (SW Uganda). Physics and Chemistry of Minerals, 39, 601611.CrossRefGoogle Scholar
Lazebnik, K.A., Nikishova, L.V. and Lazebnik, Y.D. (1986) Tokkoite — a new mineral of charoitites. Mineralogicheskii Zhurnal, 8(3), 8589.Google Scholar
Liebau, F (2012) Structural Chemistry of Silicates: Structure, Bonding, and Classification. Springer-Verlag, New York.Google Scholar
Mesto, E., Kaneva, E., Schingaro, E., Vladykin, N., Lacalamita, M. and Scordari, F (2014) Armstrongite from Khan Bogdo (Mongolia): crystal structure determination and implications for zeolite-like cation exchange properties. American Mineralogist, 99, 24242432.CrossRefGoogle Scholar
Palatinus, L. and Chapuis, G. (2007) SUPERFLIP-a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, 40, 786790.CrossRefGoogle Scholar
Petrunina, A.A., Ilyukhin, YY and Belov, N.V. (1971) Crystal structure of tinaksite NaK2Ca2TiSi7O19(OH). Soviet Physics Doklady, 16, 338340.Google Scholar
Petrunina, A.A., Ilyukhin, YY and Belov, N.V. (1973) The crystal structure of tinaksite NaK2Ca2TiSi7O19 (OH). Pp. 1018 in: Constitution and Properties of Minerals (E.K Lazarenko and A.S. Povarennykh, editors). Naukova Dumka, Kiev, Russia.Google Scholar
Rogov, Y.G., Rogova, YR, Voronkov, A.A. and Moleva, V.A. (1965) Tinaksite, NaK2Ca2TiSi7O19(OH), anew mineral. Doklady Academii Nauk SSSR, 162, 658661.Google Scholar
Rozhdestvenskaya, I.V. and Nikishova, L.V. (2002) Crystallochemical characteristics of alkali calcium silicates from charoitites. Crystallography Reports, 47, 545554.CrossRefGoogle Scholar
Rozhdestvenskaya, I.V., Nikishova, L.V., Lazebnik, Yu.D. and Lazebnik, K.A. (1989) The crystal structure of tokkoite and its relation to the structure of tinaksite. Zeitschrift für Kristallographie, 189, 195204.Google Scholar
Rozhdestvenskaya, I.V., Nikishova, L.V. and Lazebnik, K. A. (1991) Characteristics of the crystal structure of the tinaksite group minerals. Mineralogicheskiy Zhurnal, 13(4) 312.Google Scholar
Sokolova, M.N., Zabavnikova, N.I., Yakovlevskaya, T.A. and Rudnitskaya, E.S. (1975) Tinaksite from pegmatites of the apatite deposit Rasvumchorr (Khibiny Massif). Proceedings of the Russian Mineralogical Society, 104(8), 39-3.Google Scholar
Schingaro, E., Lacalamita, M., Scordari, F., Brigatti, M.F. and Pedrazzi, G. (2011) Crystal chemistry of Ti-rich fluorophlogopite from Presidente Olegario, Alto Paranaíba igneous province, Brazil. American Mineralogist, 96, 723743.CrossRefGoogle Scholar
Schingaro, E. Kullerud, K., Lacalamita, M., Mesto, E., Scordari, F., Zozulya, D., Erambert, M. and Ravna, E.J.K. (2014) Yangzhumingite and phlogopite from the Kvaløya lamproite (North Norway): structure, composition and origin. Lithos, 210-211, 113.CrossRefGoogle Scholar
Uvarova, Y.A., Sokolova, E., Hawthorne, F.C., Agakhanov, A.A., Pautov, L.A. and Karpenko, V.Y. (2006) The crystalchemistry of senkevichite, CsKNaCa2TiO[Si7O18(OH)], from the Dara-I-Pioz alkaline massif, northern Tajikistan. The Canadian Mineralogist, 44, 13411348.CrossRefGoogle Scholar
Vladykin, N.V (2000) Malyi Murun volcano-plutonic complex: an example of differentiated mantle magmas of lamproitic type. Geochemistry International, 38, S73-S83.Google Scholar
Vladykin, N.V (2005) Unique Murun massif of ultra-potassic agpaitic alkaline rocks and carbonatites: magmatism and genesis. Genetic types of ore deposits. Journal of Applied Geochemistry, IMGRE, Moskow, 7, 124144.Google Scholar
Vladykin, N.V. (2009) Potassium alkaline lamproite-carbonatite complexes: petrology, genesis, and ore reserves. Russian Geology and Geophysics, 50, 11191128.CrossRefGoogle Scholar
Vladykin, N.V and Tsaruk, I.I. (2003) Geologe, chemistry, and genesis of Ba-Sr-bearing (benstonite) carbonatites of the Murun massif. Russian Geology and Geophysics, 4, 325339.Google Scholar
Vladykin, N.V., Matveeva, L.N., Bogacheva, N.G. and Alekseev, Y.A. (1983) Resent findings on charoite and charoites rocks. Pp. 4157 in: Mineralogy and Genesis ofGemstones in East Siberia (Glazynov, O.M., editor). Nauka, Moscow.Google Scholar
Wang, Y., He, H., Ivanov, A.V., Zhu, R. and Lo, C. (2014) Age and origin of charoitite, Malyi Murun massif, Siberia, Russia. International Geology Review, 56, 10071019.CrossRefGoogle Scholar
Watkin, D.J. (1994) The control of difficult refinements. Acta Crystallographica, A50, 411–137.CrossRefGoogle Scholar
Supplementary material: PDF

Lacalamita et al. supplementary material

Table 5a. Extra data

Download Lacalamita et al. supplementary material(PDF)
PDF 49.5 KB
Supplementary material: PDF

Lacalamita et al. supplementary material

Table 6

Download Lacalamita et al. supplementary material(PDF)
PDF 46.1 KB
Supplementary material: PDF

Lacalamita et al. supplementary material

Table 8

Download Lacalamita et al. supplementary material(PDF)
PDF 45.4 KB