Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-03T05:07:48.716Z Has data issue: false hasContentIssue false

The structure of hügelite, an arsenate of the phosphuranylite group, and its relationship to dumontite

Published online by Cambridge University Press:  05 July 2018

A. J. Locock*
Affiliation:
Department of Civil Engineering and Geological Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, Indiana, 46556, USA
P. C. Burns
Affiliation:
Department of Civil Engineering and Geological Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, Indiana, 46556, USA
*

Abstract

The crystal structure of hügelite, Pb2[(UO2)3O2(AsO4)2](H2O)5, monoclinic, space group P21/m, a= 31.066(3)Å, b= 17.303(2)Å, c= 7.043(1)Å, β = 96.492(2)°, V= 3761.6(1)Å3, Z= 8, Dcalc = 5.74 g/cm3, was solved by direct methods using data from a crystal twinned by pseudo-merohedry, and was refined by full-matrix least-squares techniques on the basis of F2 to agreement indices R1 of 3.3% calculated for 5519 unique observed reflections (|Fo| 5 ≥ 4σF), and wR2 of 6.7% for all data. Intensity data were collected at room temperature using Mo-Kα radiation and a CCD-based area detector. Hügelite is a member of the phosphuranylite group and is the arsenate counterpart of dumontite. The sheets of uranyl pentagonal and hexagonal bipyramids and arsenate tetrahedra in hügelite are oriented parallel to (100), and the interlayer contains four symmetrically independent Pb atoms, each of which is coordinated by two oxygen atoms from uranyl ions, two oxygen atoms from arsenate tetrahedra, and three symmetrically distinct H2O groups. The unit-cell volume is four times larger than that previously reported for hügelite, or expected by comparison to dumontite, Pb2[(UO2)3O2(PO4)2](H2O)5; the larger cell probably results from the accommodation of the larger As atoms (relative to P) in the structure, and consequent subtle variations in the coordination geometries of the U and Pb positions.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, I.D. and Altermatt, D. (1985 Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Ada Crystdlographica, B41, 244247.Google Scholar
Burns, P.C. (1999 The crystal chemistry of uranium. Pp. 2390 in: Uranium: Mineralogy, Geochemistry and the Environment (Burns, P.C. and Finch, R., editors). Reviews in Mineralogy, 38. Mineralogical Society of America, Washington D.C.CrossRefGoogle Scholar
Burns, P.C. (2000 A new uranyl phosphate chain in the structure of parsonsite. American Mineralogist, 85, 801805.CrossRefGoogle Scholar
Burns, P.C., Ewing, R.C. and Hawthorne, F.C. (1997 The crystal chemistry of hexavalent uranium: polyhedron geometries, bond-valence parameters, and polymerization of polyhedra. The Canadian Mineralogist, 35, 15511570.Google Scholar
Durrfeld, V. (1913 Uber Krystalle eines wasserhaltigen Blei-Zink-Vanadinits von Reichenbach bei Lahr (Schwarzwald). [Translation: On a crystal of water-bearing lead zinc vanadate from Reichenbach near Lahr (Black Forest)]. Zeitschrift fiir Kristallographie, 51, 278279.Google Scholar
Durrfeld, V. (1914 Uber einige bemerkenswerte Mineralvorkommen des Kinzigtales (Schwarzwald). 4. Hiigelit, ein neues wasserhaltiges Blei-Zink-Vanadinit von Reichenbach bei Lahr. [Translation: On the remarkable mineral occurrences of Kinzigtales (Black Forest). 4. Hiigelite, a new water-bearing lead zinc vanadate from Reichenbach near Lahr.] Zeitschrift fiir Kristallographie, 53, 182183.Google Scholar
Finch, R. and Murakami, T. (1999 Systematics and paragenesis of uranium minerals. Pp. 91180 in: Uranium: Mineralogy, Geochemistry and the Environment (Burns, P.C. and R. Finch, editors). Reviews in Mineralogy, 38. Mineralogical Society of America, Washington D.C.CrossRefGoogle Scholar
Fitch, A.N. and Cole, M. (1991 The structure of KUO2PO4.3D2O refined from neutron and synchrotron-radiation powder diffraction data. Material Science Research Bulletin, 26, 407414.CrossRefGoogle Scholar
Fitch, A.N. and Fender, B.E.F. (1983 The structure of deuterated ammonium uranyl phosphate trihydrate, ND4UO2PO4-3D2O by powder neutron diffraction. Acta Crystallographica, C39, 162166.Google Scholar
Fitch, A.N., Bernard, L., Howe, A.T., Wright, A.F. and Fender, B.E.F. (1983 The room-temperature structure of DUO2AsO4-4D2O by powder neutron diffraction. Acta Crystallographica, C39, 159162.Google Scholar
Herbst-Irmer, R. and Sheldrick, G.M. (1998 Refinement of twinned structures with SHELXL97. Acta Crystallographica, B54, 443449.Google Scholar
Ibers, J.A. and Hamilton, W.C., editors (1974 International Tables for X-ray Crystallography, IV. The Kynoch Press, Birmingham, UK.Google Scholar
Jameson, G.B. (1982 On structure refinement using data from a twinned crystal. Acta Crystallographica, A38, 817820.CrossRefGoogle Scholar
Krivovichev, S.V. and Filatov, S.K. (2001 Crystal Chemistry of Minerals and Inorganic Compounds with Complexes of Anion-Centered Tetrahedra. Saint Petersburg State University, Saint Petersburg, Russia, 122 pp. (in Russian).Google Scholar
Locock, A.J. and Burns, P.C. (2002a) The crystal structure of triuranyl diphosphate tetrahydrate. lournal of Solid State Chemistry, 163, 275280.CrossRefGoogle Scholar
Locock, A.J. and Burns, P.C. (20026 Crystal structures of three framework alkali metal uranyl phosphate hydrates. Journal of Solid State Chemistry, 167, 226236.CrossRefGoogle Scholar
Locock, A.J. and Burns, P.C. (2003 The crystal structure of synthetic autunite, Ca[(UO2)(PO4)]2(H2O)n. American Mineralogist, 88, 240244.CrossRefGoogle Scholar
Morosin, B. (1978 Hydrogen uranyl phosphate tetra-hydrate, a hydrogen ion solid electrolyte. Acta Crystallographica, B34, 37323734.CrossRefGoogle Scholar
Murakami, T., Ohnuki, T., Isobe, H. and Tsutomu, T. (1997 Mobility of uranium during weathering. American Mineralogist, 82, 888899.CrossRefGoogle Scholar
Pekov, I. (1998 Minerals First Discovered on the Territory of the former Soviet Union. Ocean Pictures Ltd., Moscow, 369 pp.Google Scholar
Piret, P. and Deliens, M. (1982 La vanmeersscheite U(UO2)3(PO4)2(OH)6-4H2O et la meta-van-meersscheite U(UO2)3(PO4)2(OH)6-2H2O. [Translation: Vanmeersscheite U(UO2)3(PO4)2(OH)6-4H2O and metavanmeersscheite U(UO2)3(PO4)2(OH)6-2H2O.] Bulletin de Mineralogie, 105, 125128.CrossRefGoogle Scholar
Piret, P. and Piret-Meunier, J. (1988 Nouvelle determination de la structure cristalline de la dumontite Pb2[(UO2)3O2(PO4)2] • 5H2O. [Translation: A new determination of the crystal structure of dumontite Pb2[(UO2)3O2(PO4)2]-5H2O.] Bulletin de Mineralogie, 111, 439442.CrossRefGoogle Scholar
Piret, P., Piret-Meunier, J. and Deliens, M. (1990 Composition chimique et structure cristalline de la dewindtite Pb3[H(UO2)3O2(PO4)2]2-12H2O. [Translation: The chemical composition and crystal structure of dewindtite Pb3[H(UO2)3O2(PO4)2]2-12H2O.] European Journal of Mineralogy, 2,399405.CrossRefGoogle Scholar
Ross, M. and Evans, H.T. (1964 Studies of the torbernite minerals (I): the crystal structure of abemathyite and the structurally related compounds NH4(UO2AsO4)-3H2O and K(H3O) (UO2AsO4)2-6H2O. American Mineralogist, 49, 15781602.Google Scholar
Shannon, R.D. (1976 Revised effective ionic radii and systematic studies of interatomic distances in halide and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Sowder, A.G., Clark, S.B. and Fjeld, R.A. (1996 The impact of mineralogy in the U(VI)-Ca-PO4 system on the environmental availability of uranium. Journal of Radioanalytical and Nuclear Chemistry, 248, 517524.CrossRefGoogle Scholar
Walenta, K. (1965 Hallimondite, a new uranium mineral from the Michael Mine near Reichenbach (Black Forest, Germany). American Mineralogist, 50, 11431157.Google Scholar
Walenta, K. (1979 Ü ber den Hügelit. [Translation: Hü ge lite.] Tschermak s Minera logi sche und Petrographische Mitteilungen, 26, 1119.Google Scholar
Walenta, K. and Wimmenauer, W. (1961 Der Mineralbestand des Michaelganges im Weiler bei Lahr (Schwarzwald). [Translation: The mineral occurrences of the Michael Mine at Weiler near Lahr (Black Forest)]. Jahreshefte des Geologischen Landesamts in Baden-Wuerttemberg, 4, 737.Google Scholar
Supplementary material: PDF

Locock and Burns supplementary material

Structure factor data

Download Locock and Burns supplementary material(PDF)
PDF 1.2 MB