Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T19:14:03.121Z Has data issue: false hasContentIssue false

The structure and thermal expansion behaviour of ikaite, CaCO3. 6H2O, from T = 114 to T = 293 K

Published online by Cambridge University Press:  05 July 2018

A. R. Lennie*
Affiliation:
Daresbury Laboratory, Warrington, Cheshire WA4 4AD, UK
C. C. Tang
Affiliation:
Daresbury Laboratory, Warrington, Cheshire WA4 4AD, UK
S. P. Thompson
Affiliation:
Daresbury Laboratory, Warrington, Cheshire WA4 4AD, UK
*

Abstract

The hydrous calcium carbonate mineral ikaite (CaCO3.6H2O) forms in nature at low temperature in carbonate- and Ca-rich waters. Ikaite crystallizes in the spacegroup C2/c, and consists of CaCO3.6H2O units with Ca ions coordinated by eight oxygens, six from H2O and two from the carbonate group. Hydrogen bonding links CaCO3.6H2O moieties to form the crystal structure.

We have used synchrotron X-ray powder diffraction at T = 243 K to refine the monoclinic structure of ikaite, and have measured unit-cell parameters of ikaite between T = 114 K and T = 293 K. Anisotropic thermal expansion in ikaite is evident, with the smallest relative increase occurring along the b direction parallel to 2-fold axes. The contribution of hydrogen bonding to thermal expansion is assessed by comparison of our data with previously published data for deuterated ikaite, ice and gypsum. Ikaite exhibits a coefficient of volume expansion intermediate between that of ice (Ih) and of deuterated gypsum (CaSO4.2D2O) between T = 114 K and T = 293 K.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berner, R.A. (1994) Geocarb II: a revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science, 291, 339376.CrossRefGoogle Scholar
Bickle, M.J. (1996) Metamorphic decarbonation, silicate weathering and the long-term carbon cycle. Terra Nova, 8, 270276.CrossRefGoogle Scholar
Bischoff, J.L., Fitzpatrick, J.A. and Rosenbauer, R.J. (1993) The solubility and stabilisation of ikaite (CaCO3.6H2O) from 0° to 25°C: Environmental and paleoclimatic implications for thinolite tufa. Journal of Geology, 101, 2133.CrossRefGoogle Scholar
Brečević, L. and Nielsen, A.E. (1993) Solubility of calcium carbonate hexahydrate. Acta Chemica Scandinavica, 47, 668673.CrossRefGoogle Scholar
Buchardt, B., Seaman, P., Stockmann, G., Wilken, M.V.U., Duwel, L., Kristiansen, A., Jenner, C., Whiticar, M.J., Kristensen, R.M., Petersen, G.H. and Thorbjørn, L. (1997) Submarine columns of ikaite tufa. Nature, 390, 129130.CrossRefGoogle Scholar
Cernik, R.J., Murray, P.K., Pattison, P. and Fitch, A.N. (1990) A 2-circle powder diffractometer for synchrotron radiation with a closed-loop encoder feed back - system. Journal of Applied Crystallography, 23, 292296.CrossRefGoogle Scholar
Clarkson, J.R., Price, T.J. and Adams, C.J. (1992) Role of metastable phases in the spontaneous precipitation of calcium carbonate. Journal of the Chemical Society, Faraday Transactions, 88, 243249.CrossRefGoogle Scholar
Collins, S.P., Cernik, R.J., Pattison, P., Bell, A.M.T. and Fitch, A.N. (1992) A 2-circle powder diffractometer for synchrotron radiation on Station 2.3 at the SRS Review of Scientific Instruments, 63, 10131014.CrossRefGoogle Scholar
Council, T.C. and Bennett, P.C. (1993) Geochemistry of ikaite formation at Mono Lake, California: Implicat ions for the origin of tufa mounds. Geology, 21, 971974.2.3.CO;2>CrossRefGoogle Scholar
De Lurio, J.L. and Frakes, L.A. (1999) Glendonites as a paleoenvironmental tool: Implications for early Cretaceous high latitude climates in Australia. Geochimica et Cosmochimica Acta, 63, 10391048.CrossRefGoogle Scholar
Dickens, B. and Brown, W.E. (1970) The crystal structure of calcium carbonate hexahydrate at ∼–120°. Inorganic Chemistry, 9, 480486.CrossRefGoogle Scholar
Gache, N. and Gal, J.-Y. (1998) Mécanismes de formation du tartre. I. Sur l’existence du complexe non chargée CaCO3(0). Tribune de l’Eau, 51, 316.Google Scholar
Greenwald, I. (1941) The dissociation of calcium and magnesium carbonates and bicarbonates. Journal of Biological Chemistry, 141, 789794.CrossRefGoogle Scholar
Hesse, K.-F. and Küppers, H. (1983) Refinement of the structure of Ikaite, CaCO3.6H2O. Zeitschrift für Kristallographie, 163, 227231.Google Scholar
Ichikawa, M. (1978) The O-H vs O…O distance correlation, the geometric isotope effect in OHO bonds, and its application to symmetric bonds. Acta Crystallographica, B34, 20742080.CrossRefGoogle Scholar
Ichikawa, M. (2000) Hydrogen-bond geometry and its isotope effect in crystals with OHO bonds-revisited. Journal of Molecular Structure, 552, 6370.CrossRefGoogle Scholar
Jalilehvand, F., SpaÊngberg, D., Lindqvist-Reis, P., Hermansson, K., Persson, I., and Sandström, M. (2001) Hydration of the calciumion. An EXAFS, large-angle X-ray scattering, and molecular dynamics simulation study. Journal of the American Chemical Society, 123, 431441.CrossRefGoogle Scholar
Jansen, J.H.F., Woendsdregt, C.F., Kooistra, M.J. and van der Gaast, S.J. (1987) Ikaite pseudomorphs in the Zaire deep-sea fan: an intermediate between calcite and porous calcite. Geology, 15, 245248.2.0.CO;2>CrossRefGoogle Scholar
Johnston, J.D. (1995) Pseudomorphs after ikaite in a glaciomarine sequence in the Dalradian of Donegal, Ireland. Scottish Journal Of Geology, 31, 39.CrossRefGoogle Scholar
Kennedy, G.L., Hopkins, D.M. and Pickthorn, W.J. (1987) Ikaite, the glendonite precursor, in estuarine sediments at Barrow, Arctic Alaska. Geological Survey of Alaska Annual Meeting, Abstract, Programme, 9, 725.Google Scholar
Kerrick, D.M. and Connolly, J.A.D. (2001) Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth's mantle. Nature, 411, 293296.CrossRefGoogle ScholarPubMed
Krauss, F. and Schriever, W. (1930) Die Hydrate des Calciumcarbona tes. Zeit schrift Anorgani sche Chemie, 188, 259273.Google Scholar
Laundy, D., Tang, C., Roberts, M., Miller, M., Thompson, S. and Bushnell-Wye, G. (2003) Software for automatic calibration of synchrotron powder diffractometers. Journal of Synchrotron Radiation, 10, 183186.CrossRefGoogle ScholarPubMed
Le Bail, A. (1992) Extracting structure factors from powder diffraction data by iterating full pattern profile fitting. P. 213 in: Accuracy in Powder Diffraction II (Prince, E. and Stalick, J. K., editors). NIST Special Publication, No. 846 US Department of Commerce, Gaithersburg, Massachusetts.Google Scholar
Mackenzie, E. (1923) Calcium carbonate hexahydrate. Journal of the Chemical Society, 188, 24092417.CrossRefGoogle Scholar
MacLean, E.J., Millington, H.F.F., Neild, A.A. and Tang, C.C. (2000) A versatile diffraction instrument on Station 2.3 of the Daresbury Laboratory. European Powder Diffraction, Pts 1 and 2, Materials Science Forum, 321–324, 212217.Google Scholar
Marion, G.M. (2001) Carbonate mineral solubility at low temperatures in the Na-K-Mg-Ca-H-Cl-SO4- OH-HCO3-CO3-CO2-H2O system. Geochimica et Cosmochimica Acta, 65, 18831896.CrossRefGoogle Scholar
Marland, G. (1975) The stability of CaCO3.6H2O (ikaite). Geochimica et Cosmochimica Acta, 39, 8391.CrossRefGoogle Scholar
Marsh, K.N. (editor) (1987) Recommended Reference Materials for the Realization of Physicochemical Properties. Blackwell Scientific Publications, Oxford, UK.Google Scholar
Mikkelsen, A., Andersen, A.B., Engelsen, S.B., Hansen, H.C.B., Larsen, O. and Skibsted, L.H. (1999) Presence and dehydration of ikaite, calcium carbonate hexahydrate, in frozen shrimp shell. Journal of Agriculture and Food Chemistry, 47, 911917.CrossRefGoogle ScholarPubMed
Morse, J.W. and Marion, G.M. (1999) The role of carbonates in the evolution of early Martian oceans. American Journal of Science, 299, 738761.CrossRefGoogle Scholar
Omelon, C.R., Pollard, W.H. and Marion, G.M. (2001) Spring discharge at Expedition Fiord, Canadian High Arctic: Assessing conditional constraints for natural crystal growth. Geochimica et Cosmochimica Acta, 65, 14291437.CrossRefGoogle Scholar
Pauly, H. (1963) ‘Ikaite,’ a new mineral from Greenland. Arctic, 16, 263264.CrossRefGoogle Scholar
Pelouze, M.J. (1865) Sur une combinaison nouvelle d’eau et de carbonate de chaux. Chemical Review, 60, 429431.Google Scholar
Rietveld, H.M. (1967) Line pro. les of neutron powder diffraction peaks for structure refinement. Acta Crystallographica, 22, 151152.CrossRefGoogle Scholar
Rietveld, H.M. (1969) A pro. le re. nement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2, 6571.CrossRefGoogle Scholar
Röttger, K., Endriss, A., Ihringer, J., Doyle, S. and Kuhs, W.F. (1994) Lattice constants and thermal expansion of H2O and D2O ice Ihbetween 10 and 265 K. Acta Crystallographica B, 50, 644648.CrossRefGoogle Scholar
Schoeld, P.F., Knight, K.S. and Stretton, I.C. (1996) Thermal expansion of gypsum investigated by neutron powder diffraction. American Mineralogist, 81, 847851.CrossRefGoogle Scholar
Schubert, C.J., Nurnberg, D., Scheele, N., Pauer, F. and Kriews, M. (1997) 13C isotope depletion in ikaite crystals: evidence for methane release from the Siberian shelves? Geo-Marine Letters, 17, 169174.CrossRefGoogle Scholar
Shaikh, A.M. (1990) A new crystal growth form of vaterite, CaCO3. Journal of Crystal Growth, 23, 263265.Google Scholar
Shearman, D.J. and Smith, A.J. (1985) Ikaite, the parent mineral of jar rowi te- type pseud omorphs. Proceedings of the Geologists’ Association of London, 96, 305314.CrossRefGoogle Scholar
Shearman, D.J., McGugan, A., Stein, C. and Smith, A.J. (1989) Ikaite, CaCO3·6H2O, the precursor of the thinolites in the Quaternary tufas and tufa mounds of the Lahontan and Mono Lake Basins, western United States. Bulletin of the Geological Society of America, 101, 913917.2.3.CO;2>CrossRefGoogle Scholar
Spanos, N. and Koutsoukos, P.G. (1998) The transformation of vaterite to calcite: effect of the conditions of the solutions in contact with the mineral phase. Journal of Crystal Growth, 191, 783790.CrossRefGoogle Scholar
Stein, C. and Smith, A.J. (1985) Authigenic carbonate nodules in the Nankai Trough, Site 583. Initial reports of the Deep Sea Drilling Project, 87, 659668.Google Scholar
Suess, E., Balzer, W., Hesse, K.F., Muller, P.J. and Wefer, G. (1982) Calcium carbonate hexahydrate from organic-rich sediments of the Antarctic Shelf: Precursors of Glendonites. Science, 1216, 11281131.CrossRefGoogle Scholar
Swainson, I.P. and Hammond, R.P. (2001) Ikaite, CaCO3.6H2O: Cold comfort for glendonites as paleothermometers. American Mineralogist, 86, 15301533.CrossRefGoogle Scholar
Swainson, I.P. and Hammond, R.P. (2003) Hydrogen bonding in ikaite, CaCO3.6H2O. Mineralogical Magazine, 67, 555562.CrossRefGoogle Scholar
Tanaka, H. (1998) Thermodynamic stability and negative thermal expansion of hexagonal and cubic ices. Journal of Chemical Physics, 108, 48874893.CrossRefGoogle Scholar
Van Valkenburg, A., Mao, H.K. and Bell, P.M. (1971) Ikaite (CaCO3.6H2O), a phase more stable than calcite and aragonite (CaCO3) at high water pressure. Carnegie Instituti on Geophysica l Laborator y, Annual Report of the Director, pp. 233–237.Google Scholar