Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T18:26:23.887Z Has data issue: false hasContentIssue false

Structure and function of siderophores produced by mycorrhizal fungi

Published online by Cambridge University Press:  05 July 2018

K. Haselwandter*
Affiliation:
Department of Microbiology, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
*

Abstract

Most fungi synthesize siderophores as chelating agents which form soluble complexes with Fe3+ with very high stability constants, thus solubilizing ferric Fe. Ericoid mycorrhizal fungi release ferricrocin or fusigen as the main siderophores. Ferricrocin was also shown to be produced by the ectomycorrhizal fungi, Cenococcum geophilum and Hebeloma crustuliniforme. Arbuscular mycorrhizal fungi are reported to enhance Fe-uptake rates of associated host plants which can be taken as an indication that mycorrhizal siderophores of a yet unknown structure may be involved. Mycorrhizal fungi of orchids were shown to produce as the main siderophores, both well known ferrichrome-type siderophores or the novel linear trishydroxamate basidiochrome.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Burford, E.P., Fomina, M. and Gadd, G.M. (2003) Fungal involvement in bioweathering and biotrans-formation of rocks and minerals. Mineralogical Magazine, 67, 1127–1155.CrossRefGoogle Scholar
Buss, H.L., Lüttge, A. and Brantley, S.L. (2007) Etch pit formation on iron silicate surfaces during side-rophore-promoted dissolution. Chemical Geology, 240, 326–342.CrossRefGoogle Scholar
Cheah, S.F., Kraemer, S.M., Cervini-Silva, J. and Sposito, G. (2003) Steady-state dissolution kinetics of goethite in the presence of desferrioxamine B and oxalate ligands: implications for the microbial acquisition of iron. Chemical Geology, 198, 63–75 CrossRefGoogle Scholar
Cress, W.A., Johnson, G.V. and Barton, L.L. (1986) The role of endomycorrhizal fungi in iron uptake by Hilaria jamesii. Journal of Plant Nutrition, 9, 547–556.Google Scholar
Essen, S.A., Bylund, D., Holmström, S.J.M., Moberg, M. and Lundstrom, U.S. (2006) Quantification of hydroxamate siderophores in soil solutions of podzolic soil profiles in Sweden. BioMetals, 19, 269–282.CrossRefGoogle ScholarPubMed
Haselwandter, K. (1995) Mycorrhizal fungi: siderophore production. Critical Reviews in Biotechnology, 15, 287–291.CrossRefGoogle Scholar
Haselwandter, K. and Bowen, G.D. (1996) Mycorrhizal relations in trees for agroforestry and land rehabilitation. Forest Ecology and Management, 81, 1–17.CrossRefGoogle Scholar
Haselwandter, K. and Winkelmann, G. (2002) Ferricrocin — an ectomycorrhizal siderophore o. Cenococcum geophilum. BioMetals, 15, 73–77.Google Scholar
Haselwandter, K. and Winkelmann, G. (2007) Siderophores of symbiotic fungi. Pp. 91–103 in: Microbial Siderophore. (Chincholkar, S.B. and Varma, A., editors). Soil Biology Series, Vol. 12, Springer, Berlin.Google Scholar
Haselwandter, K., Dobernigg, B., Beck, W., Jung, G., Cansier, A. and Winkelmann, G. (1992) Isolation and identification of hydroxamate siderophores of ericoid mycorrhizal fungi. Biometals, 5, 51–56.CrossRefGoogle Scholar
Haselwandter, K., Passler, V., Reiter, S., Schmid, D.G., Nicholson, G., Hentschel, P., Albert, K. and Winkelmann, G. (2006) Basidiochrome — a novel siderophore of the orchidaceous mycorrhizal fungi Ceratobasidiu. and Rhizoctoni. spp. BioMetals, 19, 335–343.CrossRefGoogle Scholar
Hersman, L., Lloyd, T. and Sposito, G. (1995) Siderophore-promoted dissolution of hematite. Geochimica et Cosmochimica Ada, 59, 3327–3330.CrossRefGoogle Scholar
Hoffland, E., Kuyper, T.W., Wallander, H., Plassard, C. Gorbushina, A.A., Haselwandter, K., Holmstrom, S., Landeweert, R., Lundstrom, U.S., Rosling, A., Sen, R., Smits, M.M., van Hees, P.A.W. and van Breemen, N. (2004) The role of fungi in weathering. Frontiers in Ecolology and the Environment, 2, 258–264.Google Scholar
Johnson, L. (2008) Iron and siderophores in fungal-host interactions. Mycological Research, 112, 170–183.CrossRefGoogle ScholarPubMed
Liermann, L.J., Kalinowski, B.E., Brantley, S.L. and Ferry, J.G. (2000) Role of bacterial siderophores in dissolution of hornblende. Geochmica et Cosmochimica Ada, 64, 587–602.Google Scholar
Peterson, R.L., Massicotte, H.B. and Melville, L.H. (2004) Mycorrhizas: Anatomy and Cell Biology. NRC Research Press, Ottawa.Google Scholar
Powell, P.E., Cline, G.R., Reid, C.P.P. and Szaniszlo, P.J. (1980) Occurrence of hydroxamate siderophore iron chelators in soils. Nature (London), 287, 833–834.CrossRefGoogle Scholar
Reichard, P.U., Kretzschmar, R. and Kraemer, S.M. (2007) Dissolution mechanisms of goethite in the presence of siderophores and organic acids. Geochimica et Cosmochimica Ada, 71, 5635–5650.CrossRefGoogle Scholar
Renshaw, J.C., Robson, G.D., Trinci, A.P.J., Wiebe, M.G., Livens, F.R., Collison, D. and Taylor, R.J. (2002) Fungal siderophores: structures, functions and applications. Mycological Research, 106, 1123–1142.CrossRefGoogle Scholar
Shaw, G., Leake, J.R., Baker, A.J.M. and Read, D.J. (1990) The biology of mycorrhiza in the Ericaceae. XVII. The role of mycorrhizal infection in the regulation of iron uptake by ericaceous plants. New Phytology, 115, 251–258.CrossRefGoogle Scholar
Smith, S.E. and Read, D.J. (2008) Mycorrhizal Symbiosis, 3rd edition. Academic Press, New York.Google Scholar
Szaniszlo, P.J., Powell, P.E., Reid, C.P.P. and Cline, G.R. (1981) Production of hydroxamate siderophore iron chelators by ectomycorrhizal fungi. Mycologia, 73, 1158–1174.CrossRefGoogle Scholar
van Hees, P.A.W., Rosling, A., Essen, S., Godbold, D.L., Jones, D.L. and Finlay, R.D. (2006) Oxalate and ferricrocin exudation by the extramatrical mycelium of an ectomycorrhizal fungus in symbiosis wit. Pinus sylvestris. New Phytology, 169, 367–377.Google Scholar
Watteau, F. and Berthelin, J. (1994) Mineral dissolution of iron and aluminium from soil minerals: efficiency and specificity of hydroxamate siderophores compared to aliphatic acids. European Journal of Soil Biology, 30, 1–9.Google Scholar
Winkelmann, G. (1992) Structures and functions of fungal siderophores containing hydroxamate and complexone type iron binding ligands. Mycological Research, 96, 529–534.CrossRefGoogle Scholar