Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-15T21:16:20.047Z Has data issue: false hasContentIssue false

Structure and chemistry of phosphate minerals*

Published online by Cambridge University Press:  05 July 2018

Frank C. Hawthorne*
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2

Abstract

For complex rocks in which the structure of minerals, rather than their chemical composition, changes with progressive evolution of the system, it makes sense to try and monitor such an evolving system through the progressive change in the crystal structures of the constituent phases. In effect, the paragenetic sequences of minerals in such complex environments should be related to the crystal structures of the constituent minerals. In order to consider variations in structure topology, we need to organize crystal structures into hierarchical schemes, using the hypothesis that structures may be hierarchically ordered according to the polymerization of the coordination polyhedra with higher bondstrengths. Structural units are organized according to the mode of polymerization: unconnected polyhedra, clusters, chains, sheets and frameworks.

The bond-valence structure of (OH) and (H2O) shows that on one side, (OH) and H2O are strong Lewis bases; on the other side, they are weak Lewis acids. As a result, a very important role of both (OH) and (H2O) is to prevent polymerization of the structural unit in specific directions. Thus, the dimensionality of the structural unit is controlled primarily by the amount and role of hydrogen in the structure. The way in which we have formulated these ideas also allows development of a predictive framework within which specific aspects of the chemistry and structure of phosphates can be considered.

This approach to mineral structure, applied via the idea of a structural unit, can play a major role in developing structural hierarchies in order to bring about some sort of order to the plethora of hydroxyhydrated-phosphate structures. Furthermore, by combining the idea of binary structural representation with bond-valence theory, we see the eventual possibility of predicting stoichiometry and structural characteristics of these minerals, particularly those in complex low-temperature hydrothermal environments

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbona, F., Calleri, M. and Ivaldi, G. (1984) Synthetic struvite, MgNH4PO4.6H2O: correct polarity and surface features of some complementary forms. Acta Crystallogr., B40, 223–7.CrossRefGoogle Scholar
Baur, W.H. (1959) Die Kristallstruktur des Edelamblygonits LiAlPO4(OH,F). Acta Crystallogr., 12, 988–94.CrossRefGoogle Scholar
Baur, W.H. (1969a) The crystal structure of paravauxite, Fe2+Al2(PO4)2(OH)2(OH2)6·2H2O. Neues Jahrb. Mineral., Mh., 430–3.Google Scholar
Baur, W.H. (1969 b) A comparison of the crystal structures of pseudolaueite and laueite. Amer. Mineral., 54, 1312–23.Google Scholar
Baur, W.H. and Rama Rao, B. (1967) The crystal structure of metavauxite. Naturwiss., 21, 561–2.CrossRefGoogle Scholar
Bragg, W.L. (1930) The structure of silicates. Z. Kristallogr., 74, 237305.Google Scholar
Brotherton, P.D., Maslen, E.N., Pryce, M.W. and White, A.H. (1974) Crystal structure of collinsite. Austral. J. Chem., 27, 653–6.CrossRefGoogle Scholar
Brown, I.D. (1981) The bond-valence method; an empirical approach to chemical bonding and structure. Structure and Bonding in Crystals, Vol. 2, edited by O'Keeffe, M. and Navrotsky, A., pp. 130. New York: Academic Press.Google Scholar
Brown, I.D. (1992) Chemical and steric constraints in inorganic solids. Acta Crystallogr., B48, 553–72.CrossRefGoogle Scholar
Brown, I.D. and Shannon, R.D. (1973) Empirical bond-strength–bond-length curves for oxides. Acta Crystallogr., A29, 266–82.CrossRefGoogle Scholar
Catti, M., Ferraris, G.and Filhol, A. (1977): Hydrogen bonding in the crystalline state. CaHPO4 (monetite), P or P1? A novel neutron diffraction study. Acta Crystallogr., B33, 1223–9.CrossRefGoogle Scholar
Catti, M., Ferraris, G.and Ivaldi, G. (1979) Refinement of the crystal structure of anapaite , Ca2Fe(PO4)2·4H2O: hydrogen bonding and relationships with the bihydrated phase. Bull. Soc. Franc. Mineral. Cristallogr., 102, 314–8.Google Scholar
Černý, P. (1982) Anatomy and classification of granitic pegmatites. In. Mineralogical Association of Canada Short Course Handbook, 8, 139.Google Scholar
Christ, C.L. (1960) Crystal chemistry and systematic classification of hydrated borate minerals. Amer. Mineral., 45, 334–40.Google Scholar
Christ, C.L. and Clark, J.R. (1977) A crystal-chemistry classification of borate structures with emphasis on hydrated borates. Phys. Chem. Mineral., 2, 5987.CrossRefGoogle Scholar
Fanfani, L.and Zanazzi, P.F. (1968) The crystal structure of vauquelinite and the relationship to fornacite. Z. Kristallogr., 126, 433–43.CrossRefGoogle Scholar
Fanfani, L., Nunzi, A.and Zanazzi, P.F. (1970) The crystal structure of fairfieldite. Acta Crystallogr., B26, 640–5.CrossRefGoogle Scholar
Fanfani, L., Tomassini, M., Zanazzi, P.F. and Zanzari, A.R. (1978) The crystal structure of strunzite, a contribution to the crystal chemistry of basic ferricmanganous hydrated phosphates. Tscherm. Mineral. Petrogr. Mitt., 25, 7787.CrossRefGoogle Scholar
Ferraris, G.and Franchini-Angela, M. (1974) Hydrogen bonding in the crystalline state. Crystal structure and twinning of NaNH4HPO4 4H2O (stercorite). Acta Crystallogr., B30, 504–11.CrossRefGoogle Scholar
Fisher, D.J. (1958) Pegmatite phosphates and their problems. Amer. Mineral., 43, 181207.Google Scholar
Giuseppetti, E.and Tadini, C. (1984) The crystal structure of childrenite from Tavistock (S.W. England), Ch89Eo11 term of childrenite-eosphorite series. Neues Jahr. Mineral., Mh., 263–71.Google Scholar
Groat, L.A., Raudsepp, M., Hawthorne, F.C., Ercit, T.S., Sherriff, B.L. and Hartman, J.S. (1990) The amblygonite-montebrasite series: characterization by single-crystal structure refinement, infrared spectroscopy, and multinuclear MAS-MNR spectroscopy. Amer. Mineral., 75, 9921008.Google Scholar
Hansen, A.W. (1960) The crystal structure of eosphorite. Acta Crystallogr., 13, 384–7.CrossRefGoogle Scholar
Hawthorne, F.C. (1979) The crystal structure of morinite. Canad. Mineral., 17, 93102.Google Scholar
Hawthorne, F.C. (1983) Graphical enumeration of polyhedral clusters. Acta Crystallogr., A39, 724–36.CrossRefGoogle Scholar
Hawthorne, F.C. (1984) The crystal structure of stenonite, and the classification of the aluminofluoride minerals. Canad. Mineral., 22, 245–51.Google Scholar
Hawthorne, F.C. (1985) Towards a structural classification of minerals: the viMivT2On minerals. Amer. Mineral., 70, 455–73.Google Scholar
Hawthorne, F.C. (1988) Sigloite: The oxidation mechanism in [M2 3+ (PO4)2(OH)2(H2O)2]2− structures. Mineral. Petrol., 38, 201–11.CrossRefGoogle Scholar
Hawthorne, F.C. (1990) Structural hierarchy in M[6]T[6]ϕn minerals. Z. Kristallogr., 192, 152.CrossRefGoogle Scholar
Hawthorne, F.C. (1992) The role of OH and H2O in oxide and oxysalt minerals. Z. Kristallogr., 201, 183206.Google Scholar
Hawthorne, F.C. (1994) Structural aspects of oxides and oxysalt crystals. Acta. Crystallogr., B50, 481510.CrossRefGoogle Scholar
Kampf, A.R. (1977) Minyulite: Its atomic arrangement. Amer. Mineral., 62, 256–62.Google Scholar
Kampf, A.R. and Moore, P.B. (1976) The crystal structure of bermanite, a hydrated manganese phosphate. Amer. Mineral., 61, 1241–8.Google Scholar
Kampf, A.R. and Moore, P.B. (1977) Melonjosephite, calcium iron hydroxyphosphate: its crystal structure. Amer. Mineral., 62, 60–6.Google Scholar
Khan, A.A. and Baur, W.H. (1972) Salt hydrates. VIII. The crystal structures of sodium ammonium orthochromate dihydrate and magnesium diammonium Bis(hydrogen orthophosphate) tetrahydrate and a discussion of the ammonium ion. Acta Crystallogr. B28, 683–93.CrossRefGoogle Scholar
Kniep, R.and Mootz, D. (1973) Metavariscite: a redetermin ation of its crystal structure. Acta Crystallogr., B29, 2292–4.CrossRefGoogle Scholar
Kniep, R., Mootz, D.and Vegas, A. (1977) Variscite. Acta Crystallogr., B33, 263–5.CrossRefGoogle Scholar
Liebau, F. (1985) Structural Chemistry of Silicates. Berlin: Springer Verlag.CrossRefGoogle Scholar
Lindberg, M.L. and Christ, C.L. (1959) Crystal structures of the isostructural minerals lazulite, scorzalite and barbosalite. Acta Crystallogr., 12, 695–6.CrossRefGoogle Scholar
Meagher, E.P. Gibbons, C.S. and Trotter, J. (1974) The crystal structure of jagowerite: BaAl2P2O8(OH)2 . Amer. Mineral., 59, 291–5.Google Scholar
Moore, P.B. (1965) The crystal structure of laueite. Amer. Mineral., 50, 1884–92.Google Scholar
Moore, P.B. (1966) The crystal structure of metastrengite and its relationship to strengite and phosphosiderite. Amer. Mineral., 51, 168–76.Google Scholar
Moore, P.B. (1971) Crystal chemistry of the alluaudite structure type: contribution to the paragenesis of pegmatitic phosphate giant crystals. Amer. Mineral., 56, 1955–75.Google Scholar
Moore, P.B. (1972) Octahedral tetramer in the crystal structure of leucop hosph ite, K2[Fe4 3+ (OH)2 (H2O)2(PO4)4] 2H2O. Amer. Mineral., 57, 397410.Google Scholar
Moore, P.B. (1973) Pegmatite phosphates: Mineralogy and crystal chemistry. Mineral. Rec., 4, 103–30.Google Scholar
Moore, P.B. (1974) Isotypy of robertsite, mitridatite and arseniosiderite. Amer. Mineral., B59, 55–9.Google Scholar
Moore., P.B. (1975 a) Laueite, pseudolaueite, stewartite and metavauxite: a study in combinatorial polymorphism. Neues Jahrb. Mineral., Abh., 123, 148–59.Google Scholar
Moore, P.B. (1975 b) Brianite, Na2CaMg[PO4]2: a phosphate analog of merwinite, Ca2CaMg[SiO4]2 . Amer. Mineral., 60, 717–8.Google Scholar
Moore, P.B. (1981) Complex crystal structures related to glaserite, K3Na(SO4)2: evidence for very dense packings among oxysalts. Bull. Soc. franç. Mineral. Cristallogr., 104, 536–47.Google Scholar
Moore, P.B. (1984) Crystallochemical aspects of the phosphate minerals. In Phosphate Minerals, Niagru, J.O. and Moore, P.B. (eds), 155–70. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Moore, P.B. and Araki, T.(1974 a) Stewartite, Mn2+Fe2 3+(OH)2(H2O)6[PO4]2 2H2O: its atomic arrangement. Amer. Mineral., 59, 1272–6.Google Scholar
Moore, P.B. and Araki, T. (1974 b) Jahnsi te, CaMn2+Mg2(H2O)8Fe2 3+ (OH)2[PO4]4: a novel stereoisomerism of ligands about octahedral corner-chains. Amer. Mineral., 59, 964–73.Google Scholar
Moore, P.B. and Araki, T. (1975) Palermoite, SrLi2[Al4(OH)4(PO4)4]: its atomic arrangement and relationship to carminite, Pb2[Fe4(OH)4(AsO4)4]. Amer. Mineral., 60, 460–5.Google Scholar
Moore, P.B. and Araki, T.(1977 a) Overite, seglerite and jahnsite: a study in combinatorial polymorphism. Amer. Mineral., 62, 692702.Google Scholar
Moore, P.B. and Araki, T.(1977 b) Mitridatite, Ca6(H2O)6[Fe9 III O6(PO4)9]·3H2O. A noteworthy octahedr al sheet structu re. Inorg. Chem., 16, 1096–106.CrossRefGoogle Scholar
Moore, P.B. and Ito, J. (1978) I. Whiteite, a new species, and a proposed nomenclature for the jahnsitewhiteite complex series. Mineral. Mag., 42, 309–16.CrossRefGoogle Scholar
Moore, P.B., Kampf, A.R. and Irving, A.J. (1974) Whitmoreite, Fe2+Fe2 3+(OH)2(H2O)4[PO4]2, a new species: its description and crystal structure. Amer. Mineral., 59, 900–5.Google Scholar
Moore, P.B., Irving, A.J. and Kampf, A.R. (1975) Foggite, goedkenite and samuelsonite: three new species from the palermo No. 1 pegmatite, North Groton, New Hamphsire. Amer. Mineral., 60, 957–64.Google Scholar
Moore, P.B., Araki, T., Kampf, A.R. and Steele, I.M. (1976) Olmsteadite, K2Fe2 2+[Fe2 2+(Nb,Ta)2 5+ O4 (H2O)2(PO4)4], a new species, its crystal structure and relation to vauxite and montgomeryite. Amer. Mineral., 61, 511.Google Scholar
Nichols, M.C. (1966) The structure of tsumebite. Amer. Mineral., 51, 267.Google Scholar
Pabst, A. (1950) A structural classification of fluoaluminates. Amer. Mineral., 35, 149–65.Google Scholar
Pajunen, A.and Lahti, S.I. (1985) New data on lacroixite, NaAlFPO4. Crystal structure. Amer. Mineral., 70, 852–5.Google Scholar
Pauling, L. (1929) The principles determining the structure of complex ionic crystals. J. Amer. Chem. Soc., 51, 1010–26.CrossRefGoogle Scholar
Pauling, L. (1960) The Nature of the Chemical Bond, 3rd edn. Ithaca, New York: Cornell University Press.Google Scholar
Simonov, W.I. and Belov, N.V. (1958) Die Aufklärung der Struktur des Amblygonits mit Hilfe der Minimumfunktion. Kristallogr., 3, 428–37.Google Scholar
Sudarsanan, K.and Young, R.A. (1969) Significant precision in crystal structural details: Holly Springs Hydroxyapatite. Acta Crystallogr., B25, 1534–43.CrossRefGoogle Scholar
Sutor, D.J. (1967) The crystal and molecular structure of newberyite, MgHPO4·3H2O. Acta Crystallogr., 23, 418–22.CrossRefGoogle Scholar
White, J.S. Jr., Henderson, E.P. and Mason, B. (1967) Secondary minerals produced by weathering of the Wolf Creek Meteorite. Amer. Mineral., 52, 1190–7.Google Scholar
Zoltai, T. (1960) Classification of silicates and other minerals with tetrahedral structures. Amer. Mineral., 45, 960–73.Google Scholar