Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-10T02:49:01.515Z Has data issue: false hasContentIssue false

Structural, spectroscopic and computational studies on the monoclinic polymorph (form I) of potassium hydrogen disilicate (KHSi2O5)

Published online by Cambridge University Press:  05 July 2018

D. Schmidmair
Affiliation:
Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, A-6020 Innsbruck, Austria
V. Kahlenberg*
Affiliation:
Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, A-6020 Innsbruck, Austria
L. Perfler
Affiliation:
Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, A-6020 Innsbruck, Austria
D. M. Többens
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Department of Crystallography, Hahn-Meitner- Platz 1, D-14109 Berlin, Germany

Abstract

Hydrothermal treatment of quartz with 2 M K2CO3 solutions at 623 K and 1 kbar resulted in the formation of single crystals of the monoclinic polymorph of potassium hydrogen disilicate (KHSi2O5 or KSi2O4(OH)). Basic crystallographic data of this so-called phase I at room conditions are as follows: space group C2/m, a = 14.5895(10) Å, b = 8.2992(3) Å, c = 9.6866(7) Å, β = 122.756(10)°, V = 986.36(10) Å3, Z = 8. The structure was determined by direct methods and refined to a residual of R(|F|) = 0.0224 for 892 independent observed reflections with I > 2σ(I). The compound belongs to the group of chain silicates. It is based on crankshaft-like vierer double-chains running parallel to [010]. The H atoms are associated with silanol groups. Hydrogen bonding between neighbouring double-chains results in the formation of ∼5 Å wide slabs. The three crystallographically independent K cations with six to eight O ligands provide linkage (1) between the chains of a single slab or (2) between adjacent slabs. Structural investigations have been supplemented by micro-Raman spectroscopy. The interpretation of the spectroscopic data including the allocation of the bands to certain vibrational species has been aided by DFT calculations.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M.C., Polidori, G. and Camalli, M. (1994) SIR92 – a program for automatic solution of crystal structures by direct methods. Journal of Applied Crystallography, 27, 435.Google Scholar
Benbertal, D. and Mosset, A. (1994) A new solution route to silicates. Journal of Solid State Chemistry, 108, 340345.CrossRefGoogle Scholar
Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica B, 47, 192197.CrossRefGoogle Scholar
Bull, I. and Parise, J.B. (2003) Cs[Si3O6(OH)] and Rb[Si2O4(OH)]: two novel phyllosilicates. Acta Crystallographica C, 59, i100–i102.Google Scholar
Chiari, G., Gazzoni, G., Craig, J.R., Gibbs, G.V. and Louisnathan, S.J. (1985) Two independent refinements of the structure of paracelsian. American Mineralogist, 70, 969974.Google Scholar
Deng, Z.Q., Lambert, J.F. and Fripiat, J.J. (1989) A puckered layered silicate, KHSi2O5: hydrolysis products and alkylammonium intercalated derivates. Chemistry of Materials, 1, 375380.CrossRefGoogle Scholar
Dörsam, G., Kahlenberg, V. and Fischer, R.X. (2003) Single crystal X-ray diffraction study of CsHSi2O5. Zeitschrift für Anorganische und Allgemeine Chemie, 629, 981984.CrossRefGoogle Scholar
Dovesi, R., Roetti, C., Fava, F., Prencipe, M. and Saunders, V.R. (1991) On the elastic properties of lithium, sodium and potassium oxide: an ab initio study. Chemical Physics, 156, 1119.CrossRefGoogle Scholar
Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V.R. and Zicovich-Wilson, C.M. (2005) CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals. Zeitschrift für Kristallographie, 220, 571573.Google Scholar
Dowty, E. (2011) ATOMS6.4. Shape Software, Kingsport, Tenessee, USA.Google Scholar
Farrugia, L.S. (1999) WinGX suite for small-molecule single-crystal crystallography Journal of Applied Crystallography, 32, 837838.CrossRefGoogle Scholar
Ferguson, R.B., Ball, N.A. and Černý, P. (1991) Structure refinement of an adularian end-member high sanidine from the Buck Claim pegmatite, Berni c Lake, Manitoba. The Canadian Mineralogist, 29, 543552.Google Scholar
Funk, H. and Stade, H. (1962) Die Herstellung der Kaliumhydrogensilicate (KHSiO3)x, KHSi2 O5 (I) und KHSi2O5 (II) aus Methanol. Zeitschrift für Anorganische und Allgemeine Chemie, 315, 7990.CrossRefGoogle Scholar
Garvie, L.A.J., Devouard, B., Groy, T.L., Cámara, F. and Buseck, P.R. (1999) Crystal structure of kanemite, NaHSi2O5·3H2O, from the Aris phonolite, Namibia. American Mineralogist, 84, 11701175.CrossRefGoogle Scholar
Gatta, G.D., Cappelletti, P., Rotiroti, N., Slebodnick, C. and Rinaldi, R. (2009) New insights into the crystal structure and crystal chemistry of the zeolite phillipsite. American Mineralogist, 94, 190199.CrossRefGoogle Scholar
Gatti, C., Saunders, V.R. and Roetti, C. (1994) Crystalfield effects on the topological properties of the electron-density in molecular-crystals – the case of urea. Journal of Chemical Physics, 101, 1068610696.CrossRefGoogle Scholar
Horiba Jobin, Yvon (2010) LabSpec 5 software. S.A.S. Headquarters, 91165 Longjumeau Cedex, France.Google Scholar
Khomyakov, A.P. (1995) Mineralogy of Hyperagpaitic Alkaline Rocks. Oxford University Press, Oxford, UK.Google Scholar
LeBihan, M.T., Kalt, A. and Wey, R. (1971) Étude structurale de KHSi2O5 et H2Si2O5. Bulletin de la Société française de minéralogie et de cristallographie, 94, 1523.CrossRefGoogle Scholar
Lengauer, C.L., Kolitsch, U. and Tillmanns, E. (2009) Flörkeite, K3Ca2Na[Al8Si8O32]·12H2O, a new phillipsite- type zeolite from the Bellerberg, East Eifel volcanic area, Germany. European Journal of Mineralogy, 21, 901913.CrossRefGoogle Scholar
Libowitzky, E. (1999) Correlation of O-H stretching frequencies and O–H···O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.CrossRefGoogle Scholar
Liebau, F. (1985) Structural Chemistry of Silicates. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Malinovski, Yu. A. and Belov, N.V. (1979) Crystalline structure of potassium hydrogen silicate (KHSi2O5). Doklady Akademii Nauk SSSR, 246, 99103. [in Russian].Google Scholar
Morey, G.W. (1914) New crystalline silicates of potassium and sodium, their preparation and general properties. Journal of the American Chemical Society, 36, 215230.CrossRefGoogle Scholar
Morey, G.W. (1917) The ternary system H2O–K2SiO3–SiO2. Journal of the American Chemical Society, 39, 11731229.CrossRefGoogle Scholar
Nyfeler, D. and Armbruster, T. (1998) Silanol groups in minerals and inorganic compounds. American Mineralogist, 83, 119125.CrossRefGoogle Scholar
Oglesby, J.V., Kroeker, S. and Stebbins, J.F. (2001) Potassium hydrogen silicate: a possible model compound for 17O NMR spectra of hydrous silicate glasses. American Mineralogist, 86, 341347.CrossRefGoogle Scholar
Pascale, F., Zicovich-Wilson, C.M., Lopez, F., Civalleri, B., Orlando, R. and Dovesi, R. (2004) The calculation of vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code. Journal of Computational Chemistry, 25, 888897.CrossRefGoogle ScholarPubMed
Pascale, F., Zicovich-Wilson, C. M., Orlando, R., Roetti, C., Ugliengo, P. and Dovesi, R. (2005) Vibration frequencies of Mg3Al2Si3O12 pyrope. An ab initio study with the CRYSTAL code. Journal of Physical Chemistry B, 109, 61466152.CrossRefGoogle ScholarPubMed
Perinet, G., Tiercelin, J.J. and Barton, C.E. (1982) Présence de kanemite dans les sediments récents du lac Bogoria, Rift Gregory, Kenya. Bulletin de Minéralogie, 105, 633639.CrossRefGoogle Scholar
Prince, E. (editor) (2004) International Tables for Crystallography, Vol. C: Mathematical, Physical and Chemical Tables, third edition. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
Procházková, E., Rykl, D. and Seidl, V. (1974) Formation of KHSi2O5 under hydrothermal conditions. Scientific Papers from the Institute of Chemical Technology Prague, G16, 2936.Google Scholar
Pukall, W. (1916) Wasserglas und Alkalisilicate. Berichte der deutschen chemischen Gesellschaft, 49, 397436.CrossRefGoogle Scholar
Rakić, S. and Kahlenberg, V. (2001) Single crystal structure investigation of twinned NaKSi2O5 – a novel single layer silicate. Solid State Science, 3, 659667.CrossRefGoogle Scholar
Rakić, S., Kahlenberg, V. and Schmidt, B.C. (2003) High pressure mixed alkali disilicates in the system Na2-xKxSi2O5: hydrothermal synthesis and crystal structures of NaKSi2O5-II and Na0.67K1.33Si2O5. Zeitschrift für Kristallographie, 218, 413420.Google Scholar
Rinaldi, R., Pluth, J.J. and Smith, J.V. (1974) Zeolites of the phillipsite family. Refinement of the crystal structure of phillipsite and harmotome. Acta Crystallographica B, 30, 24262433.CrossRefGoogle Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172, 567570.CrossRefGoogle ScholarPubMed
Sassi, M., Gramlich, V., Miehé-Brendlé, J., Josien, L., Paillaud, J.L., Benggedach, A. and Patarin, J. (2003) Synthesis and characterization of a new onedimensional sodium silicate named Mu-29. Microporous and Mesoporous Materials, 64, 5161.CrossRefGoogle Scholar
Schweinsberg, H. and Liebau, F. (1972) Darstellung und kristallographische Daten von K2Si2O5, KHSi2O5 I und K2Si4O9. Zeitschrift für Anorganische und Allgemeine Chemie, 387, 241251.CrossRefGoogle Scholar
Sheldrick, G.M. (1997) SHELX-97 – A program for crystal structure refinement. University of Göttingen, Germany.Google Scholar
Többens, D. M. and Kahlenberg, V. (2011) Improved DFT calculation of Raman spectra of silicates. Vibrational Spectroscopy, 56, 265272.CrossRefGoogle Scholar
Towler, M.D., Allan, N.L., Harrison, N.M., Saunders, V.R., Mackrodt, W.C. and Apra, E. (1994) An ab initio Hartree-Fock study of MnO and NiO. Physical Review B, 50, 50415054.CrossRefGoogle Scholar
Ugliengo, P., Pascale, F., Merawa, M., Labeguerie, P., Tosoni, S. and Dovesi, R. (2004) Infrared spectra of hydrogen-bonded ionic crystals: ab initio study of Mg(OH)2 and b-Be(OH)2 Journal of Physical Chemistry B, 108 1363213637.CrossRefGoogle Scholar
Supplementary material: File

Schmidmair et al. supplementary material

KHSi2O5 RT 293K cif

Download Schmidmair et al. supplementary material(File)
File 42.9 KB
Supplementary material: File

Schmidmair et al. supplementary material

KHSi2O5 LT 173K Cif

Download Schmidmair et al. supplementary material(File)
File 19.9 KB