Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T21:21:56.834Z Has data issue: false hasContentIssue false

Structural parameters of Cr-bearing spinels and pleonaste from the Cuillin Igneous Complex (Isle of Skye, Scotland): Implications for metamorphic and cooling history

Published online by Cambridge University Press:  02 January 2018

D. Lenaz*
Affiliation:
Department of Mathematics and Geosciences, University of Trieste, Italy
M. Velicogna
Affiliation:
Department of Mathematics and Geosciences, University of Trieste, Italy
U. Hålenius
Affiliation:
Department of Geosciences, Swedish Museum of Natural History, Stockholm, Sweden
B. O'Driscoll
Affiliation:
School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester M13 9PL, UK

Abstract

The Outer Layered Suite of the Cuillin Igneous Complex (Isle of Skye, NW Scotland) comprises a Peridotite Series and a younger Allivalite Series (the latter comprising troctolites, eucrites and gabbros). Close to the junction between the Peridotite and the Allivalite Series (but wholly contained within the latter), an ultramafic breccia unit containing abundant peridotite xenoliths crops out. In the Peridotite Series, reddish-brown Cr-bearing spinels are present as disseminated crystals in the peridotite and also as chromitite seams, while in the peridotite xenoliths of the breccia unit, green pleonaste occurs in both of these modes of textural occurrence. Optical absorption spectroscopy reveals that the colour difference between the two spinel phases is related mainly to variable Al, Cr and Fe contents, while crystal structural analysis shows that the cooling rate calculated utilizing the oxygen positional parameter is comparable for all samples. The intracrystalline closure temperature for the Cr-spinel in the Peridotite Series is different for the disseminated and seam textural occurrences of the spinels, while the temperatures yielded by pleonaste in the peridotite xenoliths are the same for both textural occurrences. Our dataset suggests that the pleonaste in the peridotite xenoliths has been heated and equilibrated under subsolidus conditions, probably during breccia formation. During this heating, homogenization of the closure temperatures of pleonaste spinels occurred.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Basso, R., Comin-Chiaramonti, P., Della, Giusta A. and Flora, O. (1984) Crystal chemistry of four Mg-Fe-Al-Cr spinels from the Balmuccia peridotite (Western Italian Alps). Neues Jahrbuch für Mineralogie Abhlandungen, 150, 110.Google Scholar
Bell, B.R. and Claydon, R.V. (1992) The cumulus and post-cumulus evolution of chrome-spinels in ultra-basic layered intrusions: evidence from the Cuillin Igneous Complex, Isle of Skye, Scotland. Contributions to Mineralogy and Petrology, 112, 242—253.CrossRefGoogle Scholar
Bosi, F., Andreozzi, G.B., Ferrini, Y and Lucchesi, S. (2004) Behavior of cation vacancy in kenotetrahedral Cr-spinels from Albanian eastern belt ophiolites. American Mineralogist, 89, 13671373.CrossRefGoogle Scholar
Bromiley, G.D., Nestola, F., Redfern, S.A.T.. and Zhang, M. (2010) Water incorporation in synthetic and natural MgAl2O4 spinel. Geochimica et Cosmochimica Acta, 74, 705718.CrossRefGoogle Scholar
Carbonin, S., Russo, U. and Della Giusta, A. (1996) Cation distribution in some natural spinels from X-ray diffraction and Mössbauer spectroscopy. MineralogicalMagazine, 60, 355368.Google Scholar
Carbonin, S., Marin, S., Tumiati, S. and Rossetti, P. (2015) Magnetite from the Cogne serpentinites (Piemonte ophiolite nappe, Italy): Insights into seafloor fluid-rock interaction. European Journal of Mineralogy, 27, 3150.CrossRefGoogle Scholar
Carraro, A. (2003) Crystal chemistry of chromian spinels from a suite of spinel peridotite mantle xenoliths from the Predazzo Area (Dolomites, Northern Italy). European Journal of Mineralogy, 15, 681—688.CrossRefGoogle Scholar
Claydon, R.V. and Bell, B.R. (1992) The structure and petrology of ultrabasic rocks in the southern part of the Cuillin Igneous Complex, Isle of Skye. Transactions of the Royal Society of Edinburgh: Earth Science, 83, 635653.CrossRefGoogle Scholar
Della Giusta, A., Carbonin, S. and Ottonello, G. (1996) Temperature-dependant disorder in a natural Mg - Al -Fe +-Fe +-spinel. Mineralogical Magazine, 60, 603616.CrossRefGoogle Scholar
Della, Giusta A., Carbonin, S. and Russo, U. (2011) Chromite to magnetite transformation: compositional variations and cation distributions (southern Aosta Valley, Western Alps, Italy). Periodico di Mineralogia, 80, 117.Google Scholar
Derbyshire, E.J., O'Driscoll, B., Lenaz, D., Gertisser, R. and Kronz, A. (2013) Compositionally heterogeneous podiform chromitite in the Shetland Ophiolite Complex (Scotland): Implications for chromitite petrogenesis and late-stage alteration in the upper mantle portion of a supra-subduction zone ophiolite. Lithos, 162-163, 279300.CrossRefGoogle Scholar
Emeleus, C.H. (1991) Tertiary igneous activity. Pp. 455502.in: The Geology of Scotland(G.Y Craig, editor). Geological Society of London Special Publication, London.Google Scholar
Emeleus, C.H. and Bell, B.R. (2005) British Regional Geology: The Palaeogene Volcanic Districts of Scotland (4th Edition). British Geological Survey, Keyworth, UK.Google Scholar
Fregola, R.A., Bosi, F. and Skogby, H. (2011) A first report of anion vacancies in a defect MgAl2O4 natural spinel. Periodico di Mineralogia, 80, 27—38.Google Scholar
Gargiulo, M.F., Bjerg, E.A. and Mogessie, A. (2013) Spinel group minerals in metamorphosed ultramafic rocks from Rio de Las Tunas Belt, Central Andes, Argentina. Geologica Acta, 11, 133148.Google Scholar
Hålenius, U., Andreozzi, G.B. and Skogby, H. (2010) Structural relaxation around Cr + and the red-green color change in the spinel (sensu stricto)—magnesio-chromite (MgAl2O4—MgCr2O4) and gahnite— zincochromite (ZnAl2O4-ZnCr2O4) solid solution series. American Mineralogist, 95, 456462.CrossRefGoogle Scholar
Hill, R.J., Craig, J.R. and Gibbs, G.V. (1979) Systematics of the spinel structure type. Physics and Chemistry of Minerals, 4, 317339.CrossRefGoogle Scholar
Lavina, B., Salviulo, G. and Della Giusta, A. (2002) Cation distribution and structure modelling of spinel solid solutions. Physics and Chemistry of Minerals, 29, 1018.CrossRefGoogle Scholar
Lavina, B., Koneva, A. and Della Giusta, A. (2003) Cation distribution and cooling rates of Cr-substituted Mg-Al spinel from the Olkhon metamorphic complex, Russia. European Journal of Mineralogy, 15, 435–41.CrossRefGoogle Scholar
Lavina, B., Cesare, B., Álvarez-Valero, A.M., Uchida, H., Downs, R.T., Koneva, A. and Dera, P. (2009) Closure temperatures of intracrystalline ordering in anatectic and metamorphic hercynite, Fe2+Al2O4. American Mineralogist, 94, 657665.CrossRefGoogle Scholar
Lenaz, D. and Princivalle, F. (2005) The crystal chemistry of detrital chromian spinel from the Southeastern Alps and Outer Dinarides: the discrimination of supplies from areas of similar tectonic setting? The Canadian Mineralogist, 43, 13051314.CrossRefGoogle Scholar
Lenaz, D. and Princivalle, F. (2011) First occurrence of titanomagnetite from the websterite dykes within Balmuccia peridotite (Ivrea—Verbano zone): Crystal chemistry and structural refinement. Periodico di Mineralogia, 80, 1926.Google Scholar
Lenaz, D., Andreozzi, G.B., Mitra, S., Bidyananda, M. and Princivalle, F. (2004) Crystal chemical and 57Fe Mössbauer study of chromite from the Nuggihalli schist belt (India). Mineralogy and Petrology, 80, 4557.CrossRefGoogle Scholar
Lenaz, D., Skogby, H., Princivalle, F. and Hålenius, U. (2006) The MgCr2O4-MgFe2O4 solid solution series: effects of octahedrally coordinated Fe + on T—O bond lengths. Physics and Chemistry of Minerals, 33, 465–74.CrossRefGoogle Scholar
Lenaz, D., Braidotti, R., Princivalle, F., Garuti, G. and Zaccarini, F. (2007) Crystal chemistry and structural refinement of chromite from different chromitite layers and xenoliths of the Bushveld Complex. European Journal of Mineralogy, 19, 599609.CrossRefGoogle Scholar
Lenaz, D., Skogby, H., Nestola, F. and Princivalle, F. (2008) OH incorporation in nearly pure MgAl2O4natural and synthetic spinels. Geochimica et Cosmochimica Acta, 72, 475479.CrossRefGoogle Scholar
Lenaz, D., Logvinova, A.M., Princivalle, F. and Sobolev, N.V. (2009) Structural parameters of chromite included in diamonds and kimberlites from Siberia: A new tool for discriminating ultramafic source. American Mineralogist, 94, 10671070.CrossRefGoogle Scholar
Lenaz, D., De Min, A., Garuti, G., Zaccarini, F. and Princivalle, F. (2010) Crystal chemistry of Cr-spinels from the lherzolite mantle peridotite of Ronda (Spain). American Mineralogist, 95, 1323—1328.CrossRefGoogle Scholar
Lenaz, D., O'Driscoll, B. and Princivalle, F. (2011) Petrogenesis of the anorthosite - chromitite association: crystal-chemical and petrological insights from the Rum Layered Intrusion, NW Scotland. Contributions to Mineralogy and Petrology, 162, 12011213.CrossRefGoogle Scholar
Lenaz, D., Garuti, G., Zaccarini, F., Cooper, R.W. and Princivalle, F. (2012) The Stillwater complex chromi-tites: The response of chromite crystal chemistry to magma injection. Geologica Acta, 10, 33—41.Google Scholar
Lenaz, D., Youbi, N., De Min, A., Boumehdi, M.A. and Ben Abbou, M. (2014a) Low intra-crystalline closure temperatures of Cr-bearing spinels from the mantle xenoliths of the Middle Atlas Neogene-Quaternary Volcanic Field (Morocco): A mineralogical evidence of a cooler mantle beneath the West African Craton. American Mineralogist, 99, 267275.CrossRefGoogle Scholar
Lenaz, D., Adetunji, J. and Rollinson, H. (2014b) Determination of Fe +/ΣFe ratios in chrome spinels using a combined Mössbauer and single-crystal X-ray approach: application to chromitites from the mantle section of the Oman ophiolite. Contributions to Mineralogy and Petrology, 167, article 958.CrossRefGoogle Scholar
Lenaz, D., Andreozzi, G.B., Bidyananda, M. and Princivalle, F. (2014c) Oxidation degree of chromite from Indian ophiolites: a crystal chemical and 57Fe Mössbauer study. Periodico di Mineralogia, 83, 241255.Google Scholar
Lenaz, D., Princivalle, F. and Schmitz, B. (2015) First crystal-structure determination of chromites from an acapulcoite and ordinary chondrites. Mineralogical Magazine, 79, 755765.CrossRefGoogle Scholar
Lindsley, D.H. (1976) The crystal chemistry and structure of oxide minerals as exemplified by the Fe-Ti oxides. Pp. 160.in: Oxide Minerals(D. Rumble III, editor), Mineralogical Society of America, Chelsea, Michigan, USA.vGoogle Scholar
Martignago, F., Dal Negro, A. and Carbonin, S. (2003) How Cr3+ and Fe3+ affect Mg-Al order-disorder transformation at high temperature in natural spinels. Physics and Chemistry of Minerals, 30, 401408.CrossRefGoogle Scholar
Martignago, F., Andreozzi, G.B. and Dal Negro, A. (2006) Thermodynamics and kinetics of cation ordering in natural and synthetic Mg(Al,Fe +)2O4 spinels from in situ high-temperature X-ray diffraction. American Mineralogist, 91, 306312.Google Scholar
Nédli, Zs., Princivalle, F., Lenaz, D. and Tóth, T.M. (2008) Crystal chemistry of clinopyroxene and spinel from mantle xenoliths hosted in Late Mesozoic lamprophyres (Villány Mts, S Hungary). Neues Jahrbuch für Mineralogie Abhlandungen, 85, 1—10.Google Scholar
O'Driscoll, B., Stevenson, C.T.E.. and Trolly, V.R. (2008) Mineral lamination development in layered gabbros of the British Palaeogene Igneous Province: A combined anisotropy of magnetic susceptibility, quantitative textural and mineral chemistry study. Journal of Petrology, 49, 11871221.CrossRefGoogle Scholar
O'Driscoll, B., Emeleus, C.H., Donaldson, C.H. and Daly, J.S. (2010) Cr-spinel seam petrogenesis in the Rum Layered Suite, NW Scotland: Cumulate assimilation and in situ crystallization in a deforming crystal mush. Journal of Petrology, 51, 11711201.Google Scholar
Perinelli, C., Bosi, F., Andreozzi, G.B., Conte, A.M. and Armienti, P. (2014) Geothermometric study of Cr-spinels of peridotite mantle xenoliths from Northern Victoria Land (Antarctica). American Mineralogist, 99, 839846.CrossRefGoogle Scholar
Prince, E. (2004) International Tables for X-ray Crystallography. Volume C: Mathematical, Physicaland Chemical Tables. 3rd ed. Springer, Dordrecht, The Netherlands.Google Scholar
Princivalle, F., Della Giusta, A. and Carbonin, S. (1989) Comparative crystal chemistry of spinels from some suites of ultramafic rocks. Mineralogy and Petrology, 40, 117126.CrossRefGoogle Scholar
Princivalle, F., Della Giusta, A., De Min, A. and Piccirillo, E.M. (1999) Crystal chemistry and significance of cation ordering in Mg-Al rich Spinels from high-grade hornfels (Predazzo-Monzoni, NE Italy). Mineralogical Magazine, 63, 257—262.CrossRefGoogle Scholar
Princivalle, F., Martignago, F and Dal Negro, A. (2006) Kinetics of cation ordering in natural Mg(Al, Cr +)2O4spinels. American Mineralogist, 91, 313318.CrossRefGoogle Scholar
Princivalle, F., Martignago, F., Nestola, F and Dal Negro, A. (2012) Kinetics of cation ordering in natural Mg(Al, Fe +)2O4 spinels. European Journal of Mineralogy, 24, 633—643.CrossRefGoogle Scholar
Princivalle, F., De Min., A., Lenaz, D., Scarbolo, M. and Zanetti, A. (2014) Ultramafic xenoliths from Damaping (Hannuoba region, NE-China): petrogen-etic implications from crystal chemistry of pyroxenes, olivine and Cr-spinel and trace element content of clinopyroxene. Lithos, 188, 3—14.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Taran, M.N., Koch-Müller, M. and Langer, K. (2005) Electronic absorption spectroscopy of natural (Fe2+, Fe +)-bearing spinels of spinel s.s.—hercynite and gahnite—hercynite solid solutions at different temperatures and high-pressures. Physics and Chemistry of Minerals, 32, 175188.CrossRefGoogle Scholar
Taran, M.N., Parisi, F., Lenaz, D. and Vishnevskyy, A.A. (2014) Synthetic and natural chromium bearing spinels: an optical spectroscopy study. Physics and Chemistry of Minerals, 41, 593602.CrossRefGoogle Scholar
Tokonami, M. (1965) Atomic scattering factor for O∼ . Acta Crystallographica, 19, 486.CrossRefGoogle Scholar
Uchida, H., Lavina, B., Downes, R.T. and Chesley, J. (2005) Single-crystal X-ray diffraction of spinels from the San Carlos Volcanic Field, Arizona: Spinel as a geothermometer. American Mineralogist, 90,19001908.CrossRefGoogle Scholar
Watenphul, A., Schmidt, C. and Jahn, S. (2014) Cr(III) solubility in aqueous fluids at high pressures and temperatures. Geochimica et Cosmochimica Acta, 126, 212227.CrossRefGoogle Scholar
Waychunas, G.A. (1991) Crystal chemistry of oxides and oxyhydroxides. Pp. 11—68.in: Oxide Minerals: Petrologic and Magnetic Significance (D.H. Lindsley, editor), Mineralogical Society of America, Chelsea, Michigan, USA.Google Scholar
Yokoyama, K. (1980) Nikubuchi peridotite body in the Sanbagawa metamorphic belt; thermal history of the “Al-pyroxene-rich suite” peridotite body in high pressure metamorphic terrain. Contributions to Mineralogy and Petrology, 73, 1—13.CrossRefGoogle Scholar