Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T07:55:54.608Z Has data issue: false hasContentIssue false

Structural and compositional variations of basic Cu(II) chlorides in the herbertsmithite and gillardite structure field

Published online by Cambridge University Press:  02 January 2018

Matthew J. Sciberras*
Affiliation:
School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
Peter Leverett
Affiliation:
School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
Peter A. Williams
Affiliation:
School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
Jochen Schlüter
Affiliation:
Mineralogisch-Petrographisches Institut, Universität Hamburg, Grindelallee 48, D-20146 Hamburg, Germany
Thomas Malcherek
Affiliation:
Mineralogisch-Petrographisches Institut, Universität Hamburg, Grindelallee 48, D-20146 Hamburg, Germany
Mark D. Welch
Affiliation:
Mineral and Planetary Sciences Division, Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
Peter J. Downes
Affiliation:
Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia
David E. Hibbs
Affiliation:
Faculty of Pharmacy, University of Sydney, NSW 2006, Australia
Anthony R. Kampf
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
*

Abstract

Natural samples of the substituted basic Cu(II) chloride series, Cu4–xMx2+(OH)6Cl2(M = Zn, Ni, or Mg) were investigated by single-crystal X-ray diffraction in order to elucidate compositional boundaries associated with paratacamite and its congeners. The compositional ranges examined are Cu3.65Zn0.35(OH)6Cl2 – Cu3.36Zn0.64(OH)6Cl2 and Cu3.61Ni0.39(OH)6Cl2 – Cu3.13Ni0.87(OH)6Cl2, along with a single Mg-bearing phase. The majority of samples studied have trigonal symmetry (Rm) analogous to that of herbertsmithite (Zn) and gillardite (Ni), with a ≈ 6.8, c ≈ 14.0 Å. Crystallographic variations for these samples caused by composition are compared with both published and new data for the Rm sub-cell of paratacamite, paratacamite-(Mg) and paratacamite-(Ni). The observed trends suggest that the composition of end-members associated with the paratacamite congeners depend upon the nature of the substituting cation.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Braithwaite, R.S.W., Mereiter, K., Paar, W.H. and Clark, A.M. (2004) Herbertsmithite, Cu3Zn(OH)6Cl2, a new species, and the definition of paratacamite. Mineralogical Magazine, 68, 527539.CrossRefGoogle Scholar
Carpenter, M.A., Salje, E.K.H. and Graeme-Barber, A. (1998) Spontaneous strain as a determinant of thermodynamic properties for phase transitions in minerals. European Journal of Mineralogy, 10, 621691.CrossRefGoogle Scholar
Chu, S. (2011) Magnetic properties of geometrically frustrated polymorphic crystals of Cu4-xMgx(OH)6Cl2-Journal of Physics: Conference Series, 273, 012123.CrossRefGoogle Scholar
Chu, S., McQueen, T.M., Chisnell, R., Freedman, D.E., Müller, P., Lee, Y.S. and Nocera, D.G. (2010) A Cu2+ (S = Vi) kagomé antiferromagnet: MgxCu4-x(OH)6Cl2 . Journal of the American Chemical Society, 132, 55705571.CrossRefGoogle Scholar
Chu, S., Müller, P., Nocera, D.G. and Lee, Y.S. (2011) Hydrothermal growth of single crystals of the quantum magnets: clinoatacamite, paratacamite and herbertsmithite. Applied Physics Letters, 98, 092508.CrossRefGoogle Scholar
Clissold, M.E., Leverett, P. and Williams, P.A. (2007) The structure of gillardite, the Ni-analogue of herbertsmithite, from Widgiemooltha, Western Australia. The Canadian Mineralogist, 45, 317320.CrossRefGoogle Scholar
Colchester, D.M., Leverett, P., Clissold, M.E., Williams, P. A, Hibbs, D.E. and Nickel, E.H. (2007) Gillardite, Cu3NiCl2(OH)6, a new mineral from the 132 North deposit, Widgiemooltha, Western Australia. Australian Journal of Mineralogy, 13, 1518.Google Scholar
Fleet, M.E. (1975) The crystal structure of paratacamite, Cu2(OH)3Cl. Acta Crystallographica, B31, 183187.CrossRefGoogle Scholar
Freedman, D.E., Han, T.H., Prodi, A., Müller, P., Huang, Q.-Z., Chen, Y.-S., Webb, S.M., Lee, Y.S., McQueen, T.M. and Nocera, D.G. (2010) Site specific X-ray anomalous dispersion of the geometrically frustrated kagomé magnet, herbertsmithite, ZnCu3(OH)6Cl2 . Journal of the American Chemical Society, 132, 1618516190.CrossRefGoogle Scholar
Frondel, C. (1950) On paratacamite and some related copper chlorides. Mineralogical Magazine, 29, 3445.CrossRefGoogle Scholar
Hålenius, U., Hatert, F., Pasero, M. and Mills, S.J. (2015) New minerals and nomenclature modifications approved in 2015. Mineralogical Magazine, 79, 941947.CrossRefGoogle Scholar
Han, T.H., Helton, J.S., Chu, S., Nocera, D.G., Rodriguez-Rivera, J.A., Broholm, C. and Lee, Y.S. (2012) Fractionalized excitations in the spin-liquid state of a kagomé-lattice antiferromagnet. Nature, 492, 406–10.CrossRefGoogle ScholarPubMed
Han, T.H., Helton, J.S., Chu, S., Prodi, A., Singh, D.K., Mazzoli, C, Miiller, P., Nocera, D.G. and Lee, Y.S. (2011) Synthesis and characterisation of single crystals of the spin-Vi kagome-lattice antiferromagnets Zn-Cu4_K(Oii)6C\2. Physical Review B, 83, 100402.Google Scholar
Hatert, F. and Burke, E.A.J. (2008) The IMA-CNMNC dominant-constituent rule revisited and extended. The Canadian Mineralogist, 46, 717728.CrossRefGoogle Scholar
Helton, J.S., Matan, K., Shores, M.P., Nytko, E.A., Bartlett, B.M., Yoshida, Y., Takano, Y., Qiu, Y., Chung, J-H., Nocera, D.G. and Lee, Y.S. (2007) Spin dynamics of the spin-Vi kagome lattice antiferro-magnet ZnCu3(OH)6Cl2 . Physical Review Letters, 98, 107204107208.CrossRefGoogle ScholarPubMed
Jambor, J.L., Dutrizac, J.E., Roberts, A.C., Grice, J.D. and Szymanski, J.T. (1996) Clinoatacamite, a new poly-morph of Cu2(OH)3Cl, and its relationship to paratacamite and “anarakite”. The Canadian Mineralogist, 34, 6172.Google Scholar
Kampf, A.R., Sciberras, M.J., Leverett, P., Williams, P.A., Malcherek, T., Schlüter, J., Welch, M. and Dini, M. (2013a) Paratacamite-(Mg), Cu3(Mg,Cu)Cl2(OH)6; a new substituted basic copper chloride mineral from Camerones, Chile. Mineralogical Magazine, 77, 31133124.CrossRefGoogle Scholar
Kampf, A.R., Sciberras, M.J., Williams, P.A. and Dini, M. (2013b) Leverettite from the Torrecillas mine, Iquique Provence, Chile: the Co-analogue of herbertsmithite. Mineralogical Magazine, 77, 30473054.CrossRefGoogle Scholar
Li, Y.S. and Zhang, Q.M. (2013) Structure and magnetism of S = Vi kagome antiferromagnets NiCu3(OH)6Cl2and CoCu3(OH)6Cl2. Journal of Physics: Condensed Matter, 25, 026003.Google Scholar
Malcherek, T and Schlüter, I (2009) Structures of the pseudo-trigonal polymorphs of Cu2(OH)3Cl. Acta Crystallographica, B65, 334341.CrossRefGoogle Scholar
Malcherek, T., Bindi, L., Dini, M., Ghiara, M.R., Molina Donoso, A., Nestola, F., Rossi, M. and Schlüter, I (2014) Tondiite, Cu3Mg(OH)6Cl2, the Mg-analogue of herbertsmithite. Mineralogical Magazine, 78, 583590.CrossRefGoogle Scholar
Momma, K. and Izumi, F. (2008) VESTA: a three-dimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 41, 653658.CrossRefGoogle Scholar
Ostwald, W.Z. (1897) Studien über die Bildung und Umwaldung fester Korper. 1. Abhandlung: Übersattigung und Überkaltung. Zeitschrift für Physikalische Chemie, 22, 289330.Google Scholar
Robinson, K., Gibbs, G.V and Ribbe, P.H. (1971) Quadratic elongation: A quantitative measure of distortion in coordination polyhedral. Science, 172, 567570.CrossRefGoogle Scholar
Schores, M.P., Nytko, E.A., Bartlett, B.M. and Nocera, D. G (2005) Structurally perfect S = Vi kagomé antiferro-magnet. Journal of the American Chemical Society, 127, 1346213463.CrossRefGoogle Scholar
Sciberras, M.J., Leverett, P., Williams, P.A., Hibbs, D.E., Downes, P.J., Welch, M.D. and Kampf, A.R. (2013) Paratacamite-(Ni), Cu3(Ni,Cu)Cl2(OH)6, a new mineral from Western Australia. Australian Journal of Mineralogy, 17, 3944.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Smith, G.F.H. (1906) Paratacamite, a new oxychloride of copper. Mineralogical Magazine, 14, 170177 CrossRefGoogle Scholar
Welch, M.D., Sciberras, M.J., Leverett, P., Williams, P.A, Schlüter, I and Malcherek, T (2014) A temperature-induced reversible transformation between paratacamite and herbertsmithite. Physics and Chemistry of Minerals, 41, 33–8.CrossRefGoogle Scholar
Wulferding, D., Lemmens, P., Scheib, P., Röder, J., Mendels, P., Chu, S., Han, T and Lee, Y.S. (2010) Interplay of thermal and quantum spin fluctuations in the kagomé lattice compound herbertsmithite. Physical Review B, 52, 144412.Google Scholar