Hostname: page-component-669899f699-7xsfk Total loading time: 0 Render date: 2025-04-27T19:04:42.777Z Has data issue: false hasContentIssue false

Strontioborite: revalidation as a mineral species and new data

Published online by Cambridge University Press:  02 December 2024

Igor V. Pekov*
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Natalia V. Zubkova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Nikita V. Chukanov
Affiliation:
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, 142432 Chernogolovka, Moscow region, Russia
Vasiliy O. Yapaskurt
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Sergey N. Britvin
Affiliation:
Department of Crystallography, St Petersburg State University, Universitetskaya Nab. 7/9, 199034 St Petersburg, Russia
Dmitry A. Ksenofontov
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Dmitry Yu. Pushcharovsky
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
*
Corresponding author: Igor V. Pekov; Email: [email protected]

Abstract

Strontioborite, which was first described in 1960 and later discredited by the then named Commission on New Minerals and Mineral Names of the International Mineralogical Association (IMA CNMMN), has been re-investigated (electron microprobe, single-crystal and powder X-ray diffraction, crystal structure determination and IR spectroscopy) on two specimens, including the holotype, and revalidated by the IMA Commission on New Minerals, Nomenclature and Classification (CNMNC). Strontioborite is known only at the Chelkar salt dome (North Caspian Region, Western Kazakhstan), in halite rocks with bischofite, magnesite, anhydrite, halurgite, boracite, ginorite and celestine. It forms colourless lamellar, scaly or tabular crystals up to 2 mm across. The chemical composition (wt.%, H2O is calculated for (OH)4 = 4 H apfu, according to structural data; holotype/neotype) is: CaO 1.42/0.27, SrO 23.10/23.79, B2O3 67.37/67.57, H2O 8.73/8.72, total 100.62/100.37. The empirical formulae [calculated based on 15 O apfu = O11(OH)4 pfu] of the holotype and neotype specimens are Sr0.92Ca0.10B7.98O11(OH)4 and Sr0.95Ca0.02B8.02O11(OH)4, respectively. The idealised formula is Sr[B8O11(OH)4]. Strontioborite is monoclinic, space group P21, a = 7.6192(3), b = 8.1867(2), c = 9.9164(3) Å, β = 108.357(4)°, V = 587.07(3) Å3 and Z = 2. The strongest reflections of the powder X-ray diffraction pattern [d,Å(I)(hkl)] are: 7.22(100)(100), 5.409(61)(110), 4.090(64)(020), 3.300(48)(210), 2.121(30)($\bar{1}$24) and 2.043(37)(040, 024, $\bar{2}$24). The crystal structure, solved from single-crystal X-ray diffraction data (R = 0.0372), is based upon the (100) layers of polymerised B–O–OH polyanions [B8O11(OH)4]2– and Sr-centred nine-fold polyhedra SrO6(OH)3. The B–O–OH polyanion is the cluster of three tetrahedra and three triangles; these clusters are decorated by the [B2O2(OH)3] pyro-group consisting of two triangles. The layers are linked via vertices of Sr-centred polyhedra, which share seven vertices with B-centred polyhedra of one layer and two vertices with B-centred polyhedra of the adjacent layer, and by the system of H bonds. The crystal chemistry of strontioborite is discussed in comparison with other natural and synthetic borates.

Type
Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Associate Editor: Sergey V Krivovichev

References

Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (2003) Handbook of Mineralogy. V. Borates, Carbonates, Sulfates. Mineral Data Publishing, Tucson, USA.Google Scholar
Avrova, N.P., Bocharov, V.M., Khalturina, I.I., and Yunusova, Z.R. (1968) Mineralogy of borates in halogenic deposits. In: Geologiya i Razvedka Mestorozhdenii Tverdykh Poleznykh Iskopaemykh Kazakhstana (= Geology and Prospecting of Solid Mineral Resources of Kazakhstan). Nauka Publishing, Alma-Ata, 169173 [in Russian].Google Scholar
Belokoneva, E.L., Korchemkina, T.A. and Dimitrova, O.V. (1999) A new layered lead hexaborate with a branched radical Pb[B6O10(OH)⋅B2O(OH)3]; Structures of the new borates, strontioborite, tunellite (nobleite), strontioginorite (ginorite, volkovite), aristarainite, and macallisterite as representatives of the OD family. Russian Journal of Inorganic Chemistry, 44, 889900.Google Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 146, 104107 [in Russian].Google Scholar
Brovkin, A.A., Zayakina, N.V. and Brovkina, V.S. (1975) Crystal structure of strontioborite Sr[B8O11(OH)4]. Soviet Physics, Crystallography, 20, 563566.Google Scholar
Burns, P.C. and Hawthorne, F.C. (1994) Hydrogen bonding in tunellite. The Canadian Mineralogist, 32, 895902.Google Scholar
Chukanov, N.V. (2014) Infrared Spectra of Mineral Species: Extended Library. Springer-Verlag, Dordrecht, 1716 pp.CrossRefGoogle Scholar
Clark, J.R. (1964) The crystal structure of tunellite, SrB6O9(OH)2⋅3H2O. American Mineralogist, 49, 15491567.Google Scholar
Crystal Impact, (2024) Dr. H. Putz & Dr. K. Brandenburg GbR, Kreuzherrenstr. 102, 53227 Bonn, Germany. https://www.crystalimpact.de/diamond.Google Scholar
dal Negro, A., Sabelli, C. and Ungaretti, L. (1969) The crystal structure of macallisterite, Mg2[B6O7(OH)6]2⋅9H2O. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti, Serie 8, 47, 353364.Google Scholar
dal Negro, A., Ungaretti, L. and Sabelli, C. (1971) The crystal structure of aksaite. American Mineralogist, 56, 15531565.Google Scholar
dal Negro, A., Ungaretti, L. and Sabelli, C. (1973) Crystal structure of rivadavite. Naturwissenschaften, 60, 350350.CrossRefGoogle Scholar
Erd, R.C., Morgan, V. and Clark, J.R. (1961) Tunellite, a new hydrous strontium borate from the Kramer Borate District, California. U.S. Geological Survey Professional Paper, 424-C, 294297.Google Scholar
Ferraris, G. and Ivaldi, G. (1988) Bond valence vs bond length in O⋅⋅⋅O hydrogen bonds. Acta Crystallographica, B44, 341344.CrossRefGoogle Scholar
Fleischer, M. (1961) New mineral names. American Mineralogist, 46, 765770.Google Scholar
Fleischer, M. (1965) New mineral names. American Mineralogist, 50, 15041508.Google Scholar
Gagné, O.C. and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Ghose, S. and Wan, C. (1977) Aristarainite: Na2Mg[B6O8(OH)4]2⋅4H2O: a sheet structure with chains of hexaborate polyanions. American Mineralogist, 62, 979989.Google Scholar
Grice, J.D. (2005) Strontioginorite: crystal-structure analysis and hydrogen bonding. The Canadian Mineralogist, 43, 10191026.CrossRefGoogle Scholar
Grice, J.D. and Pring, A. (2012) Veatchite: Structural relationships of the three polytypes. American Mineralogist, 97, 489495.CrossRefGoogle Scholar
Grice, J.D., Burns, P.C. and Hawthorne, F.C. (1999) Borate minerals. II. A hierarchy of structures based upon the borate fundamental building block. The Canadian Mineralogist, 37, 731762.Google Scholar
Hey, M.H, (1961) Twenty-second list of new mineral names. Mineralogical Magazine, 32, 941991.CrossRefGoogle Scholar
IMA (1962) International Mineralogical Association: Commission on New Minerals and Mineral Names. Mineralogical Magazine, 33, 260263.CrossRefGoogle Scholar
Karanović, L., Rosić, A. and Poleti, D. (2004) Crystal structure of nobleite, Ca[B6O9(OH)2]⋅3H2O, from Jarandol (Serbia). European Journal of Mineralogy, 16, 825833.CrossRefGoogle Scholar
Kondrat'eva, V.V. (1964) Unit cell and space group of strontioborite. Kristallografiya, 9, 916917 [in Russian].Google Scholar
Kondrat'eva, V.V. (1969) Rentgenometricheskii Opredelitel' Boratov (= Reference Book for Identification of Borates from X-Ray Diffraction Data). Nedra Publishing, Leningrad, 248 pp. [in Russian].Google Scholar
Konnert, J.A., Clark, J.R. and Christ, C.L. (1970) The crystal structure of strontioginorite, (Sr,Ca)2B14O20(OH)6⋅5H2O. American Mineralogist, 55, 19111931.Google Scholar
Libowitzky, E. (1999) Correlation of O–H stretching frequencies and O–H⋅⋅⋅O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.CrossRefGoogle Scholar
Lobanova, V.V. (1960) Strontioborite, a new borate. Doklady Akademii Nauk SSSR, 135, 173175 [in Russian].Google Scholar
Malinko, S.V., Khalturina, I.I., Ozol, A.A. and Bocharov, V.M. (1991) Boron Minerals. Nedra Publishing, Moscow [in Russian].Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship. Part IV. The compatibility concept and its application. The Canadian Mineralogist, 14, 498502.Google Scholar
Nickel, E. and Nichols, M. (2004) Mineral Names, Redefinitions & Discreditations Passed by the CNMMN of the IMA. Materials Data Inc. http://www.materialsdata.com.Google Scholar
Pankova, Y.A., Gorelova, L.A., Krivovichev, S.V. and Pekov, I.V. (2018) The crystal structure of ginorite, Ca2[B14O20(OH)6]⋅5H2O, and the analysis of dimensional reduction and structural complexity in the CaO–B2O3–H2O system. European Journal of Mineralogy, 30, 277287.CrossRefGoogle Scholar
Pasero, M. (2024) The New IMA List of Minerals. International Mineralogical Association. Commission on new minerals, nomenclature and classification (IMA-CNMNC). http://cnmnc.units.it/.Google Scholar
Pekov, I.V. (1998) Minerals First Discovered on the Territory of the Former Soviet Union. OP, Moscow, 369 pp.Google Scholar
Pekov, I.V., Lykova, I.S. and Nikiforov, A.B. (2015) The collection of Victor I. Stepanov and its significance. Mineralogical Almanac, 20, 1245.Google Scholar
Pekov, I.V., Zubkova, N.V., Chukanov, N.V., Yapaskurt, V.O., Britvin, S.N. and Pushcharovsky, D.Y. (2020) Strontioborite, IMA2020–017. CNMNC Newsletter No. 56. Mineralogical Magazine, 84, 624625.Google Scholar
Rigaku Oxford Diffraction (2018) CrysAlisPro Software System, v. 1.171.39.46. Rigaku Corporation, Oxford, UK.Google Scholar
Schönegger, S., Wurst, K., Heymann, G., Schaur, A., Saxer, A., Johrendt, D. and Huppertz, H. (2018) Synthesis and characterization of the new tin borate SnB8O11(OH)4. Zeitschrift für Naturforschung B, 73, 337348.CrossRefGoogle Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Sun, H.-Y., Sun, W., Huang, Y.-X. and Mi, J.-X. (2010) Low temperature flux synthesis and characterizations of a new layered barium borate BaB8O11(OH)4. Zeitschrift für Anorganische und Allgemeine Chemie, 636, 977981.CrossRefGoogle Scholar
Wang, J.-F. and Liang, P. (2019) Thermochemical properties of alkaline-earth metals borates of a series of MB8O11(OH)4xH2O (M = Ca, Sr, Ba; x = 0, 3). The Journal of Chemical Thermodynamics, 134, 14.CrossRefGoogle Scholar
Wang, G.-M., Sun, Y.-Q. and Yang, G.-Y. (2006) Synthesis and characterization of a new layered lead borate. Journal of Solid State Chemistry, 179, 398403.CrossRefGoogle Scholar
Warr, L.N. (2021) IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85, 291320, https://doi.org/10.1180/mgm.2021.43.CrossRefGoogle Scholar
Wiggin, S.B. and Weller, M.T. (2005) Redetermination of CaB8O11(OH)4 at low temperature. Acta Crystallographica, E61, i243i245.Google Scholar
Yamnova, N.A., Egorov-Tismenko Yu, K., Zubkova, N.V., Dimitrova, O.V. and Kantor, A.P. (2005) Refined crystal structure of a synthetic calcium analogue of strontioborite, Ca[B8O11(OH)4]. Crystallography Reports, 50, 766772.CrossRefGoogle Scholar
Zayakina, N.V. and Brovkin, A.A. (1978) Crystal structure of CaO(B2O3)4(H2O)2 = CaB8O11(OH)4. Kristallografiya, 23, 11671170 [in Russian].Google Scholar
Supplementary material: File

Pekov et al. supplementary material

Pekov et al. supplementary material
Download Pekov et al. supplementary material(File)
File 133.2 KB