Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T13:14:14.887Z Has data issue: false hasContentIssue false

Stability of chlorite-quartz assemblages in rocks south and west of Keswick, Cumbria

Published online by Cambridge University Press:  05 July 2018

R. G. J. Strens
Affiliation:
Formerly of School of Physics, University of Newcastle, Newcastle upon Tyne, NE1 7RU
R. Freer*
Affiliation:
Department of Metallurgy and Materials Science, University of Manchester/UMIST, Grosvenor Street, Manchester M1 7HS
R. J. Firman
Affiliation:
Department of Geology, University of Nottingham, University Park, Nottingham NG7 2RD
*
*To whom correspondence should be addressed

Abstract

Chlorite minerals from six distinctive chlorite-quartz parageneses in central Borrowdale have been studied. All specimens were 14Å (IIb) chlorites. Cell parameters and β refractive index exhibit an approximate linear dependence on composition for the range Fe/(Fe + Mg) = 0.46 to 0.84. The data indicate an apparent trend that chlorite iron content increases with temperature. This is in conflict with experimental studies (Flemming and Fawcett, 1976), and it is inferred that the observed compositional variations reflect the availability of iron in the veins rather than a dependence on temperature.

Type
Petrology and Geochemistry
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bevins, R.E., Oliver, G.J.H., and Thomas, L.J. (1985) In Tectonic Evolution of the Caledonian-Appalachian Orogen (R. A. Gayer, ed.). Earth Evol. Sciences Mem. 1, 57-79.Google Scholar
Brown, B.E., and Bailey, S.W. (1962) Am. Mineral. 47, 819-50.Google Scholar
Burnell, J.R., and Rutherford, M.J. (1984. Ibid. 69, 1015-24.Google Scholar
Cathelineau, M., and Nieva, D. (1985) Contrib. Mineral. Petrol. 91, 235-44.Google Scholar
Chernosky, J.V. (1978) Am. Mineral. 63, 73-82.Google Scholar
Cho, M., and Fawcett, J.J. (1986. Ibid. 71, 68-77.Google Scholar
Fawcett, J.J., and Yoder, H.S. (1966. Ibid. 51, 353-80.Google Scholar
Flemming, P.D., and Fawcett, J.J. (1976. Ibid. 61, 1175-93.Google Scholar
Fyfe, W.S. (1960) J. Geol. 68, 553-66.Google Scholar
Hey, M.H. (1954) Mineral. Mag. 30, 277-92.Google Scholar
Ineson, P.R., and Mitchell, J.G. (1974) Geol. Mag. Ill , 521-37.Google Scholar
Ineson, P.R., and Mitchell, J.G. (1975) Proc. Yorks. Geol. Soc. 40, 413-18.Google Scholar
James, R.S., Turnock, A.C. and Fawcett, J.J. (1966) Contrib. Mineral. Petrol. 56, 1-25.Google Scholar
McOnie, A.W., Fawcett, J.J., and James, R.S. (1975) Am. Mineral. 60, 1047-62.Google Scholar
Oliver, R.L. (1961) Q.J. Geol. Soc. 102, 115-55.Google Scholar
Stanley, C.J., and Vaughan, D.J. (1982) J. Geol. Soc. Lond. 139, 569-79.Google Scholar
Strens, R.G.J. (1962) Ph.D. Thesis, University of Nottingham. (1964) Mineral. Mag. 33, 868-86.Google Scholar
Strens, R.G.J. (1965) Geol. Mag. 102, 393-406.Google Scholar
Soper, N.J., and Moseley, F. (1978) In The Geology of the Lake District (F. Moseley, ed.) pp. 45-67. Occ. Publ. Yorks. Geol. Soc.Google Scholar
Thomas, L.J., Harmon, R.S., and Oliver, G.J.H. (1985) Mineral. Mag. 49, 425-34.Google Scholar
Turnock, A.C. (1960) Carnegie Inst. Washington Yrb. 59, 98-103.Google Scholar