Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T10:38:31.547Z Has data issue: false hasContentIssue false

Some observations on Assarsson's Z-phase and its structural relations to gyrolite, truscottite, and reyerite

Published online by Cambridge University Press:  05 July 2018

J. A. Gard
Affiliation:
Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB9 2UE Scotland
T. Mitsuda
Affiliation:
Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB9 2UE Scotland
H. F. W. Taylor
Affiliation:
Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB9 2UE Scotland

Summary

Z-phase was obtained hydrothermally at 120 °C by decomposition of Al-substituted tobermorite and by reaction of lime and colloidal silica. X-ray and electron diffraction show that the structural element is hexagonal, with a 9·65, c 15·3 Å, and good {0001} cleavage. Reversible water loss and lattice shrinkage occur on heating, the layer thickness (c) decreasing to 12.1 Å at 400 °C. For material in equilibrium with air of normal humidity, the composition is probably between CaO. 2SiO2. 1·7H2O and CaO. 2SiO2. 2H2O; Z = 8 for the structural element. New t.g. and infrared absorption data are presented; the infra-red spectrum closely resembles that of gyrolite, but OH ions attached only to Ca appear to be absent. Conditions of formation are discussed; if Z-phase has any stability field, it is below 120 °C. Crystal structures for Z-phase, gyrolite, and truscottite are suggested, based on the known structure of reyerite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Permanent address: Materials Research Laboratory, Nagoya Institute of Technology, Gokisocho, Showa-ku, Nagoya, Japan

References

Assarsson, (G. O.), 1957. J. Phys. Chem. 61, 473.CrossRefGoogle Scholar
Assarsson, (G. O.), 1958. Ibid. 62, 223.CrossRefGoogle Scholar
Assarsson, (G. O.), 1960. Ibid. 64, 328.CrossRefGoogle Scholar
Assarsson, (G. O.), 1962. Proc. 4th Int. Symp. Chem. Cement, Washington 1960, 1, 190.Google Scholar
Clement, (S. C.) and Ribbe, (P. H.), 1973. Amer. Min. 58, 517.Google Scholar
Cliff, (G.), Gard, (J. A.), Lorimer, (G. W.), and Taylor, (H. F. W.), 1975. Min. Mag. 40, 113.CrossRefGoogle Scholar
Funk, (H.), 1961. Zeits. anorg, allg. Chem. 313, 1.CrossRefGoogle Scholar
Funk, (H.), and Thilo, (E.), 1955. Ibid. 278, 237.CrossRefGoogle Scholar
Gard, (J. A.), 1965, The Chemistry of Cements (H. F. W. Taylor, ed.), 2, ch. 21, p. 266 and Pls. 31 and 32. London and New York (Academic Press).Google Scholar
Gard, (J. A.), 1971. The Electron Optical Investigation of Clays (J. A. Gard, Ed.), ch. 2, p. 55. London (Mineralogical Society).CrossRefGoogle Scholar
Harker, (R. I.), 1964. Journ. Amer. Ceram. Soc. 47, 521.CrossRefGoogle Scholar
Howison, (J. W.) and Taylor, (H. F. W.), 1957. Mag. Concrete Res. 9, 13.CrossRefGoogle Scholar
Mackay, (A. L.) and Taylor, (H. V. W.), 1953. Min. Mag. 30, 80.Google Scholar
Merlino, (S.), 1972. Nature, 238, 124.Google Scholar
Mitsuda, (T.) and Taylor, (H. F. W.), 1975. Cement Concrete Res. 5, 203.CrossRefGoogle Scholar
Taylor, (H. F. W.), 1962. Proc. 4th Int. Syrup. Chem. Cement, Washington 1960, 1, 167.Google Scholar
Wieker, (W.), 1967. Proc. Syrup. Autoclaved Calcium Silicate Building Products, London 1965, 205.Google Scholar