Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T12:37:54.516Z Has data issue: false hasContentIssue false

Solubility and spectrochemical characteristics of synthetic chernikovite and meta-ankoleite

Published online by Cambridge University Press:  05 July 2018

Laurent Van Haverbeke
Affiliation:
Departement Scheikunde - Experimentele Mineralogie, Universiteit Antwerpen (RUCA), Middelheimlaan 1, B-2020 Antwerpen, Belgium
Renaud Vochten
Affiliation:
Departement Scheikunde - Experimentele Mineralogie, Universiteit Antwerpen (RUCA), Middelheimlaan 1, B-2020 Antwerpen, Belgium
Karel Van Springel
Affiliation:
Departement Scheikunde - Experimentele Mineralogie, Universiteit Antwerpen (RUCA), Middelheimlaan 1, B-2020 Antwerpen, Belgium

Abstract

Chernikovite and meta-ankoleite were synthesized with a relatively high crystallinity and the compounds were identified by means of chemical analysis and X-ray diffraction. The infrared spectra were recorded and the bands assigned. From the luminescence spectra, the band-gap energy for both compounds was calculated as 2.35 eV, indicating that they must be considered as insulators. The dependence of the solubilities of these compounds on the acidity of the solution was studied, and the dominant ionic species were determined. The pKsp values of chernikovite and meta-ankoleite were found to be 22.73±0.24 and 24.30±0.81 respectively.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atencio, D. (1988) Chernikovite, a new mineral name for (H3O)2(UO2)2(PO4)2.6H2O superseding 'hydrogen autunite'. Mineral. Rec., 19, 249—52.Google Scholar
Baes, C. F. Jr. (1956) A spectrophotometric investigation of uranyl phosphate complex formation in perchloric acid solution. J. Phys. Chem., 60, 878—83.CrossRefGoogle Scholar
Camargo, W.G.R. (1971) Minerals uranfferos de Perus. SP. Bol. Inst. Geociencias e Astronomia da Univ. Sao Paulo, 2, 83—201.Google Scholar
Čejka, J. Jr., Muck, A. and Cejka, J. (1985) Infrared spectra and thermal analysis of synthetic uranium m icas and their deuteroanalogues. Neues Jahrb. Mineral, Mh. 1985, 115—26.Google Scholar
Chernikov, A. A. (1958) New d ata on some uranium and uranium-bearing minerals. Proceedings of the 2nd United Nations International Conference on the Peaceful Uses of Atomic Energy, 2, 298—9.Google Scholar
Djogic, R., Sipos, L. and Branica, M. (1986) Characterization of uranium (VI) in seawater. Limnol. Oceanogr., 31, 1122—31.CrossRefGoogle Scholar
Frondel, C. (1950) Studies of uranium minerals (V): Phosphuranylite. Amer.Mineral, 35, 756—63.Google Scholar
Gallagher, M.J. and Atkin, D. (1966) V -Meta-ankoleite, hydrated potassium uranyl phosphate. Bull. Geol. Surv. Gt. Brit., 25, 49—54Google Scholar
Kashirtseva, M.F. and Valueva, A.A. (1979) On some properties of hydrogen autunite. Novye Dannye o Mineralakh, SSSRr 28, 178—82.Google Scholar
Mathur, J.N. (1991) Complexation and thermodynamics of the uranyl ion with phosphate. Polyhedron, 10, 4753.CrossRefGoogle Scholar
Moeiler, T. (1957) In Inorganic Synthese vol.V. McGraw-Hill, New York, 150–2.CrossRefGoogle Scholar
Mrose, M.E. (1953) Studies of uranium minerals (XIII): Synthetic uranospinites. Amer. Mineral., 38, 1159-68.Google Scholar
Ross, M. and Evans, H.T. Jr. (1964) Studies of the torbernite minerals (I): The crystal structure of abernathyite and the structurally related compounds (NH4)(UO2AsO4)-3H2O and K(H3O)- (UO2AsO4)-6H2O. Amer. Mineral., 49, 1578–602.Google Scholar
Ross, V. (1955) Studies of uranium minerals (XXI): Synthetic hydrogen-autunite. Amer. Mineral., 40, 917–9.Google Scholar
Singer, E. and Matucha, M. (1962) Erfahrungen mit der Bestimmung von Uran in Erzen und Gesteinen mit Arsenazo III. Z. Anal. Chem., 191, 248—53.Google Scholar
Smith, R.M. and Martell, A.E. (1989) Critical stability constants.Plenum Press, New York.CrossRefGoogle Scholar
Van Haverbeke, L. and Vochten, R. (1992) A computer program for the calculation and visualisation of the contribution of uranyl-hydroxo complexes. Proc. 29th Int. Geoi Cong. Kyoto, Japan, 957.Google Scholar
Vochten, R. (1990) Transformation of chernikovite and sodium autunite into lehnerite. Amer. Mineral, 75, 221–5.Google Scholar
Vochten, R. and Van Haverbeke, L. (1990) Transformation of schoepite into the Uranyl oxide hydrates: becquerelite, billietite and wolsendorfite. Mineral. Petrol., 43, 65—72.CrossRefGoogle Scholar
Vochten, R., Piret, P. and Goeminne, A. (1981) Synthesis, crystallographic data, solubility and electrokinetic properties of copper, nickel and cobalt uranylphosphate. Bull. Mineral, 104, 457—67.Google Scholar
Vochten, R., Van Haverbeke, L. and Van Springel, K. (1990) Transformation of Chernikovite into Parsonsite and study of its solubility product. Neues. Jahrb. Mineral, Mh., 551—8.Google Scholar
Vochten, R., Van Haverbeke, L. and Van Springel, K. (1992) Transformation of Chernikovite into meta- uranocircite II, Ba(UO2)2(PO4)2.6H2O and study of its solubility. Mineral Mag. 56, 367—72.CrossRefGoogle Scholar
Vochten, R., Van Haverbeke, L. and Van Springel, K. (1993) Synthesis of liebigite and andersonite and their solubility in aqueous medium. Can. Mineral., 31, 167-71.Google Scholar
Vochten, R., Van Haverbeke, L., Van Springel, K., Blaton, N. and Peeters, O.M. (1995) The structure and physicochemical characteristics of synthetic zippeite. Can. Mineral., 33, 1091—101.Google Scholar