Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-17T04:16:08.842Z Has data issue: false hasContentIssue false

Silicate melt inclusions in the cumulate minerals of gabbroic nodules from Stromboli Volcano (Aeolian Islands, Italy): main components of the fluid phase and crystallization temperatures

Published online by Cambridge University Press:  05 July 2018

E. Salvioli-Mariani*
Affiliation:
Dipartimento di Scienze della Terra, Università di Parma, Parco Area delle Scienze 157/A, I-43100 Parma, Italy
M. Mattioli
Affiliation:
Istituto di Vulcanologia e Geochimica, Università di Urbino, località Crocicchia, I-61029 Urbino, Italy
A. Renzulli
Affiliation:
Istituto di Vulcanologia e Geochimica, Università di Urbino, località Crocicchia, I-61029 Urbino, Italy
G. Serri
Affiliation:
Dipartimento di Scienze della Terra, Università di Parma, Parco Area delle Scienze 157/A, I-43100 Parma, Italy
*

Abstract

The studied gabbroic nodules occurring in the Petrazza pyroclastic rocks consist mainly of plagioclase (An95–87), olivine (Fo83-73) and clinopyroxene (Mg# 90–77), with subordinate opaques (Ti-magnetite) and amphibole (Mg-hastingsite), which constitute the cumulate minerals. Interstitial material has a relatively high, but variable, degree of vesicularity and consists of variable amounts of glass and quenched crystals of plagioclase (An71–55), amphibole, clinopyroxene and rare biotite, olivine and opaques. Silicate melt inclusions are abundant in the cumulate minerals, but complete homogenization to melt has been observed only in the inclusions occurring in clinopyroxene, where the temperatures of homogenization vary from 1134 to 1190°C. Microthermometric investigations of fluid inclusions and of the shrinkage bubble of the melt inclusions suggest that the magma contained CO2. The apparent scarcity of H2O indicates that this component was strongly partitioned into the magma at the time of crystallization of the investigated minerals; this is further supported by the occurrence of (1) daughter biotite- and amphibole-bearing inclusions which show that the H2O activity in the magma was sufficiently high to allow their crystallization, and (2) calcic plagioclase (An95–87) which can be crystallized from a high-alumina basaltic magma at pressure ≤2 kbar, temperatures in the range 1050–1100°C and in the presence of 3–4 wt.% of water (MELTS software simulations).

The composition of the melt inclusions suggests that the hosting plagioclase, olivine and clinopyroxene crystallized from slightly different batches of magma. The S content in the melt inclusions of clinopyroxene and olivine is high (up to 0.41 wt.%). The presence of Fe-Cu(-Ni)-rich blebs of sulphide in plagioclase, olivine, amphibole, and locally in the melt inclusions too, further supports the important role of sulphur in the primitive magmas of the investigated gabbros. Small differences in redox conditions or in the Fe content of the melts favoured S mobilization as sulphide.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allard, P. and Métrich, N. (2001) The magma feeding system of Stromboli: constraints from crystal melt inclusions and volatile fluxes. Pp. 34 in: Coordinated project, Hazard assessment of Stromboli Volcano. Gruppo Nazionale per la Vulcanologia, Italy.Google Scholar
Allard, P., Carbonnelle, J., Métrich, N., Loyer, H. and Zettwoog, P. (1994) Sulphur output and magma degassing budget of Stromboli volcano. Nature, 368, 326330.CrossRefGoogle Scholar
Ariskin, A.A. and Barmina, G.S. (1990) Equilibria thermometry between plagioclases and basalt or andesite magmas. Geochemistry International, 27, 129134.Google Scholar
Ariskin, A.A., Barmina, G.S. and Frenkel', M.Ya. (1990) Olivine-liquid and pyroxene-liquid geothermometers for lunar basalts. Geoch emistry International, 27, 3644.Google Scholar
Baker, D.R. and Eggler, D.H. (1983) Fractionation paths of Atka (Aleutians) high-alumina basalts: constraints from phase relations. Journal of Volcanology and Geothermal Research, 18, 387404.CrossRefGoogle Scholar
Bartels, K.S., Kinzler, R.J. and Grove, T.L. (1991) High pressure phase relations of primitive high-alumina basalt from Medicine Lake volcano, Northern California. Contributions to Mineralogy and Petrology, 108, 253270.CrossRefGoogle Scholar
Carroll, M.R. and Rutherford, M.J. (1985) Sulfide and sulfate saturation in hydrous silicate melts. Journal of Geophysical Research, Supplement, 90, C601C612.CrossRefGoogle Scholar
Carroll, M.R. and Rutherford, M.J. (1988) Sulfur speciation in hydrous experimental glasses of varying oxidation state: results from measured wavelength shifts of sulfur X-rays. American Mineralogist, 73, 845849.Google Scholar
Conte, A.M., Di Carlo, I., Perinelli, C., Rotolo, S.G. and Trigila, R. (2001) Recent Stromboli magma evolution from calcalkaline to shoshonitic affinity on the grounds of melting experiments, under T, P, f O2 , P H2O controlled conditions. GEOITALIA, 3º Forum FIST, Abstracts, Chieti, September 2001, pp. 680681.Google Scholar
Eggler, D.H. (1972) Water-saturated and undersaturated melting relations in a Paricutin andesite and an estimate of water content in the natural magma. Contributions to Mineralogy and Petrology, 34, 261–71.CrossRefGoogle Scholar
Eggler, D.H. and Burnham, C.W. (1973) Crystallisation and fractionation trends in the system andesite-H2OCO2-O2 at pressures to 10 kb. Geological Society of America Bulletin, 84, 25172532.2.0.CO;2>CrossRefGoogle Scholar
Ford, C.E., Russel, D.G., Craven, J.A. and Fisk, M.R. (1983) Olivine-liquid equilibria: temperature, pressure and composition dependence of the crystalliquid partition coefficients for Mg, Fe2+, Ca and Mn. Journal of Petrology, 24, 256265.CrossRefGoogle Scholar
Francalanci, L., Manetti, P., Peccerillo, A. and Keller, J. (1993) Magmatological evolution of the Stromboli volcano (Aeolian Arc, Italy): inferences from major and trace element and Sr isotopic composition of lavas and pyroclastic rocks. Acta Vulcanologica, 3, 127151.Google Scholar
Gamble, R.P. and Taylor, L.A. (1980) Crystal/liquid partitioning in augite: effects of cooling rate. Earth and Planetary Science Letters, 47, 2133.CrossRefGoogle Scholar
Ghiorso, M.S. and Sack, R.O. (1995) Chemical mass transfer in magmatic processes. IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contributions to Mineralogy and Petrology, 119, 197212.CrossRefGoogle Scholar
Grove, T.L., Gerlach, D.C. and Sando, T.W. (1982) Origin of calc-alkaline series lavas at Medicine Lake volcano by fractionation, assimilation and mixing. Contributions to Mineralogy and Petrology, 80, 160182.CrossRefGoogle Scholar
Haughton, D.R., Roeder, P.L. and Skinner, B.J. (1974) Solubility of sulfur in mafic magmas. Economic Geology, 69, 451467.CrossRefGoogle Scholar
Holloway, J.R. (1981) Volatile interactions in magmas. Pp. 273293 in: Thermodynamics of Minerals and Melts (Newton, R.C., Navrotsky, A. and Wood, B.J., editors). Springer-Verlag, Berlin, Heidelberg, New York.CrossRefGoogle Scholar
Honnorez, J. and Keller, J. (1968) Xenolithe in vulkanischen Gesteinen der Aolischen Inseln. Geologische Rundschau, 57, 719736.CrossRefGoogle Scholar
Hornig-Kjarsgaard, I., Keller, J., Koberski, U., Stadlbauer, E., Francalanci, L. and Lenhart, L. (1993) Geology, stratigraphy and volcanological evolution of the island of Stromboli, Aeolian arc, Italy. Acta Vulcanologica, 3, 2168.Google Scholar
Leake, B.E., Woolley, A.R, Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W. and Youzhi, G. (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, commission on new minerals and mineral names. Mineralogical Magazine, 61, 295321.CrossRefGoogle Scholar
Lofgren, G. (1980) Experimental studies on the dynamic crystallization of silicate melts. Pp. 487551 in: Physics of Magmatic Processes (Hargraves, R.B., editor). Princeton University Press, Princeton, New Jersey, USA.CrossRefGoogle Scholar
Martel, C., Pichavant, M., Holtz, F. and Scaillet, B. (1999) Effects of f O2 and H2O on andesite phase relations between 2 and 4 kbar. Journal of Geophysical Research, 104, 2945329470.CrossRefGoogle Scholar
Mattioli, M., Serri, G., Salvioli-Mariani, E., Renzulli, A., Holm, P.M., Santi, P. and Venturelli, G. (2002) Sub-volcanic Infiltration and syn-eruptive quenching of liquids in cumulate whole-rocks: the example of the gabbroic nodules of Stromboli (Aeolian Islands, Italy). Mineralogy and Petrology, SubmittedCrossRefGoogle Scholar
Métrich, N. and Clocchiatti, R. (1996) Sulfur abundance and its speciation in oxidized alkaline melts. Geochimica et Cosmochimica Acta, 60, 41514160.CrossRefGoogle Scholar
Métrich, N., Schiano, P., Clocchiatti, R. and Maury, R.C. (1999) Transfer of sulfur in subduction settings: an example from Batan Island (Luzon volcanic arc, Philippines). Earth and Planetary Science Letters, 167, 114.CrossRefGoogle Scholar
Métrich, N., Bertagnini, A., Landi, P. and Rosi, M. (2001) Crystallization driven by decompression and water loss at Stromboli Volcano (Aeolian Islands, Italy). Journal of Petrology, 42, 1471-90.CrossRefGoogle Scholar
Mosbah, N., Métrich, N. and Massiot, P. (1991) PIGME fluorine determination using a nuclear microprobe with application to glass inclusions. Nuclear Instruments and Methods in Physics Research, B58, 227231.CrossRefGoogle Scholar
Nilsson, K. and Peach, C.L. (1993) Sulfur speciation, oxidation state, and sulfur concentration in backarc magmas. Geochimica et Cosmochimica Acta, 57, 38073813.CrossRefGoogle Scholar
Pawley, A.R., Holloway, J.R. and McMillan, P.F. (1992) The effect of oxygen fugacity on the solubility of carbon-oxygen fluids in basaltic melt. Earth and Planetary Science Letters, 110, 213225.CrossRefGoogle Scholar
Renzulli, A. and Santi, P. (1997) Sub-volcanic crystallization at Stromboli (Aeolian Islands, Southern Italy) preceding the Sciara del Fuoco sector collapse: evidence from monzonite lithic suite. Bulletin of Volcanology, 59, 1020.CrossRefGoogle Scholar
Renzulli, A., Serri, G., Santi, P., Mattioli, M. and Holm, P.M. (2001) Origin of high-silic a liquids at Stromboli volcano (Aeolian Islands, Italy) inferred from crustal xenoliths. Bulletin of Volcanology, 62, 400419.CrossRefGoogle Scholar
Roeder, P.L. and Emslie, R.F. (1970) Olivine-liquid equilibrium. Contributions to Mineralogy and Petrology, 29, 275289.CrossRefGoogle Scholar
Sisson, T.W. and Grove, T.L. (1993 a) Temperatures and H2O contents for low-MgO high-alumina basalts. Contributions to Mineralogy and Petrology, 113, 167184.CrossRefGoogle Scholar
Sisson, T.W. and Grove, T.L. (1993 b) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contributions to Mineralogy and Petrology, 113, 143166.CrossRefGoogle Scholar
Thorpe, R.S. (1982) Andesites: Orogenic Andesites and Related Rocks. John Wiley & Sons, New York.Google Scholar
Ulmer, P. (1989) The dependence of the Fe2+-Mg cation-partitioning between olivine and basaltic liquid on pressure, temperature and composition. Contributions to Mineralogy and Petrology, 101, 261273.CrossRefGoogle Scholar
Vaggelli, G., Belkin, H.E. and Francalanci, L. (1993) Silicate-melt inclusions in the mineral phases of the Stromboli volcanic rocks: a contribution to the unders tanding of magmatic processes. Acta Vulcanologica, 3, 115125.Google Scholar
Vaggelli, G., Francalanci, L., Simon, N. and Conticelli, S. (1998) Caratterizzazione degli inclusi magmatici e metamorfici del vulcano Stromboli: contributo alla conoscenza del sistema di alimentazione. 14º Convegno Scientifico Annuale del Gruppo Nazionale per la Vulcanologia, Programme with Abstracts, Catania, March, 1998, p. 155.Google Scholar
Wallace, P. and Carmichael, I.S.E. (1992) Sulfur in basaltic magmas. Geochimica et Cosmochimica Acta, 56, 18631874.CrossRefGoogle Scholar