Article contents
Russoite, NH4ClAs23+O3(H2O)0.5, a new phylloarsenite mineral from Solfatara Di Pozzuoli, Napoli, Italy
Published online by Cambridge University Press: 15 May 2018
Abstract
The new mineral russoite (IMA2015-105), NH4ClAs23+O3(H2O)0.5, was found at the Solfatara di Pozzuoli, Pozzuoli, Napoli, Italy, as a fumarolic phase associated with alacránite, dimorphite, realgar, mascagnite, salammoniac and an amorphous arsenic sulfide. It occurs as hexagonal plates up to ~300 µm in diameter and 15 µm thick, in rosette-like intergrowths. On the basis of powder X-ray diffraction measurements and chemical analysis, the mineral was recognised to be identical to the corresponding synthetic phase NH4ClAs2O3(H2O)0.5. Crystals are transparent and colourless, with vitreous lustre and white streak. Tenacity is brittle and fracture is irregular. Cleavage is perfect on {001}. The measured density is 2.89(1) g/cm3; the calculated density is 2.911 g/cm3. The empirical formula, (based on 4.5 anions per formula unit) is [(NH4)0.94,K0.06]Σ1.00(Cl0.91,Br0.01)Σ0.92As2.02O3(H2O)0.5. Russoite is hexagonal, space group P622, with a = 5.2411(7), c = 12.5948(25) Å, V = 299.62(8) Å3 and Z = 2. The eight strongest X-ray powder diffraction lines are [dobs Å(I)(hkl)]: 12.63(19)(001), 6.32(100)(002), 4.547(75)(100), 4.218(47)(003), 3.094(45)(103), 2.627(46)(110), 2.428(31)(112) and 1.820(28)(115). The structure, was refined to R = 0.0518 for 311 reflections with I > 2σ(I) and shows a different location of the ammonium cation and water molecules with respect to that reported for the synthetic analogue. The mineral belongs to a small group of phylloarsenite minerals (lucabindiite, torrecillasite and gajardoite). It contains electrically neutral As2O3 layers, topologically identical to those found in lucabindiite and gajardoite between which are ammonium cations and outside of which Cl– anions. Water molecules and additional ammonium cations are located in a layer between two levels of chloride anions.
- Type
- Article
- Information
- Copyright
- Copyright © Mineralogical Society of Great Britain and Ireland 2018
Footnotes
Associate Editor: Charles Geiger
References
- 6
- Cited by