Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T07:29:05.911Z Has data issue: false hasContentIssue false

Rock–matrix diffusion and its implications for radionuclide migration

Published online by Cambridge University Press:  05 July 2018

D. A. Lever
Affiliation:
Theoretical Physics and Chemical Technology Divisions, AERE Harwell, Oxfordshire OX11 0RA
M. H. Bradbury
Affiliation:
Theoretical Physics and Chemical Technology Divisions, AERE Harwell, Oxfordshire OX11 0RA

Abstract

Diffusion into the rock matrix is potentially an important retardation mechanism for nuclides leached from an underground radioactive waste repository in a fractured hard rock. A technique for measuring the intrinsic diffusion coefficient and rock capacity factor is briefly described. Simple solutions to migration model equations are used, together with diffusion results and typical hydrogeological parameters, to estimate the impact of matrix diffusion on radionuclide migration. It is shown that retardation factors in excess of 100 and reductions in the peak concentration by 3–4 orders of magnitude are possible for non-sorbed ions, which would otherwise be carried by the flow and not retarded at all.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barker, J. A. (1982) Adv. Water Resources 5, 90-7.CrossRefGoogle Scholar
Bear, J. (1972) Dynamics of fluids in porous media, Elsevier.Google Scholar
Bibby, R. (1981) Water Resour. Res. 17, 1075-81.CrossRefGoogle Scholar
Bourke, P. J., Evans, G. V., Hodgkinson, D. P., and Ivanovich, M. (1982) NEA Workshop, Investigation of Rock for Burial of Radioactive W aste, Ottawa September 1982.Google Scholar
Bradbury, M. H., Lever, D. A., and Kinsey, D. V. (1982) In Scientific Basis for Radioactive Waste Management V (Lutze, W., ed.) Elsevier, 569-78.Google Scholar
Curtis, A. R. (1980) AERE Report AERE-R9820.Google Scholar
Gleuckauf, E. (1980) Ibid. AERE-R9823.Google Scholar
Gleuckauf, E. (1981) Ibid. AERE-R10043.Google Scholar
Grisak, G. E., and Pickens, J. F. (1980) Water Resour. Res. 16, 719-30.CrossRefGoogle Scholar
Harada, M., Chambré, P. L., Foglia, M., Higashi, K., Iwamoto, F., Leung, D., Pigford, T. H., and Ting, D. (1980) Lawrence Berkeley Laboratory Report LBL-10500.Google Scholar
Hodgkinson, D. P., and Lever, D. A. (1983) Radioactive Waste Management and the Nuclear Fuel Cycle 4, 129-58.Google Scholar
Hodgkinson, D. P. and Lever, D. A. and England, T. H. (1984) Ann. Nucl. Energy, 11, 111-22.CrossRefGoogle Scholar
Kanki, T., Fujita, A., Chambré, P. L., and Pigford, T. H. (1981) Trans. Am. Nuc. Soc. 39, 152-3.Google Scholar
Kipp, K. L. (1982) In Proceedings of the symposium on uncertainties associated with the regulation of the geologic disposal of high-level radioactive waste (Kocher, D. C., ed.) Gatlinburg, Tennessee, March 1981, 321-31, NUREG/CP-0022.Google Scholar
Lever, D. A., Bradbury, M. H., and Hemingway, S. J. (1983) Prog. Nucl. Energy 12, 85-117.CrossRefGoogle Scholar
Neretnieks, I. (1980) J. Geophys. Res. 85, 4379-97.CrossRefGoogle Scholar
Rae, J., and Lever, D. A. (1980) AERE Report TP.853.Google Scholar
Rasmuson, A., and Neretnieks, I. (1980) A.I.Ch.E.J. 26, 686-90.CrossRefGoogle Scholar
Rasmuson, A., and Neretnieks, I. (1981) J. Geophys. Res. 86, 3749-58.CrossRefGoogle Scholar
Skagius, K., and Neretnieks, I. (1982) In Scientific Basis for Radioactive Waste Management V (Lutze, W., ed.) Elsevier, 509-18.Google Scholar
Tang, D. H., Frind, E. O., and Sudicky, E. A. (1981) Water Resour. Res. 17, 555-64.CrossRefGoogle Scholar
Wadden, M. M., and Katsube, T. J. (1982) Chem. Geol. 36, 191214.CrossRefGoogle Scholar