Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-08T16:26:48.038Z Has data issue: false hasContentIssue false

A review of hexaferrum based on new mineralogical data

Published online by Cambridge University Press:  12 April 2018

Louis J. Cabri*
Affiliation:
Cabri Consulting Inc., Ottawa, Canada
Thomas Aiglsperger
Affiliation:
Department of Civil Engineering and Natural Resources, Luleå University of Technology, Sweden
*

Abstract

Hexaferrum, defined as an hcp Fe mineral containing varying amounts of Ru, Os, or Ir (Mochalov et al. 1998) was re-examined in the light of new analyses of similar alloys from the Loma Peguera and Loma Larga chromitites, in the central part of Loma Caribe peridotite, Cordillera Central of the Dominican Republic, together with a review of the phase chemistry in the Fe–Ni–Ir and Fe–Ru–Ir systems. We conclude that the hcp (Fe,Ir) mineral corresponds to the ε-phase of Raub et al. (1964) and should be differentiated from hexaferrum [(Fe,Os) and (Fe,Ru)] because it is separated by one to two miscibility gaps and therefore is not a continuous solid solution with Fe.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Brian O'Driscoll

This paper is published as part of a thematic set in memory of Professor Hazel M. Prichard

References

Ahmed, Z. and Bevan, J.C. (1981) Awaruite, iridian awaruite, and a new Ru-Os-Ir-Ni-Fe alloy from the Sakhakot-Qila complex, Malakand Agency, Pakistan. Mineralogical Magazine, 44, 225230.Google Scholar
Aiglsperger, T., Proenza, J., Galí, S., Rius, J., Longo, F. and Domenech, C. (2017 a) The supergene origin of ruthenian hexaferrum in Ni laterites. Terra Nova, 29, 106116.Google Scholar
Aiglsperger, T., Proenza, J., Font-Bardia, M., Baurier-Aymat, S., Galí, S., Lewis, J.F. and Longo, F. (2017 b) Supergene neoformation of Pt-Ir-Fe-Ni alloys: multistage grains explain nugget formation in Ni-laterites. Mineralium Deposita, 52, 10691083.CrossRefGoogle Scholar
Archangelskaya, O.V., Kuprina, V.V. and Polkopina, O.F. (1984) Compositional diagrams in material science. Proceedings, Naukova Dumka, Kiev, 106111 [in Russian]. Cited in Tamarkina, A.L. (2001) Iridium-nickel. Pp. 95–96 in: Phase Diagrams of Binary Metallic Systems (N.P. Lyakishev, editor) Mashinostroenie, Moscow, Vol. 3 [in Russian].Google Scholar
Bax, B., Slawik, S., Pauly, C. and Mücklich, F. (2015) Experimental investigation of phase equilibria in the Ru- Fe-Al system at 1473 K. Intermetallics, 64, 96101.Google Scholar
Barkov, A.Y., Martin, R.F., Shi, L. and Feinglos, M.N. (2008) New data on PGE alloy minerals from a very old collection (probably 1890s), California. American Mineralogist, 93, 15741580.Google Scholar
Cabri, L.J. (2002) The platinum-group minerals. Pp. 13129 in: The Geology, Geochemistry, Mineralogy, Mineral Beneficiation of the Platinum-Group Elements (Cabri, L.J., editor). Canadian Institute of Mining, Metallurgy and Petroleum, Special Volume, 54.Google Scholar
Cabri, L.J., Harris, D.C. and Weiser, T.W. (1996) The mineralogy and distribution of platinum-group mineral (PGM) placer deposits of the world. Exploration and Mining Geology, 5(2), 73167.Google Scholar
Challis, G.A. (1975) Native nickel from the Jerry River, South Westland, New Zealand: an example of natural refining. Mineralogical Magazine, 40, 247251.CrossRefGoogle Scholar
Garuti, G. and Zaccarini, F. (1997) In situ alteration of platinum-group minerals at low temperature: Evidence from serpentinized and weathered chromitite of the Vourinos complex, Greece. Canadian Mineralogist, 35, 611626.Google Scholar
Harris, D.C. and Cabri, L.J. (1973) The nomenclature of the natural alloys of osmium, iridium, and ruthenium based on new compositional data of alloys from worldwide occurrences. Canadian Mineralogist, 12, 104112.Google Scholar
Harris, D.C. and Cabri, L.J. (1991) Nomenclature of platinum-group-element alloys: review and revision. Canadian Mineralogist, 29, 231237.Google Scholar
Jambor, J.L., Kovalenker, V.A. and Roberts, A.C. (1999) New mineral names. American Mineralogist, 84, 16851688.Google Scholar
Karup-Møller, S. and Makovicky, E. (2002) The system Fe-Os-S at 1180°, 1100° and 900 °C. Canadian Mineralogist, 40, 499507.Google Scholar
Lewis, J.F. and Jimenez, J.G. (1991) Duarte Complex in the La Vega – Jarabacoa – Janico area, central Hispaniola; geological and geochemical features of the sea floor during early stages of arc evolution. Pp. 115141 in: Geologic and Tectonic Development of North America – Caribbean Plate Boundary in Hispaniola (Mann, P., Draper, G. and Lewis, J.F., editors). Geological Society of America Special Paper, 262.Google Scholar
Lewis, J.F., Draper, G., Proenza, J.A., Espaillat, J. and Jimenez, J. (2006) Ophiolite-related ultramafic rocks (serpentinites) in the Caribbean region: a review of their occurrence, composition, origin, emplacement and nickel laterite soils. Geologica Acta, 4, 237263.Google Scholar
Lyakishev, N.P. (editor) (1997) Phase Diagrams of Binary Metallic Systems. Vol. 2. Mashinostroenie, Moscow, pp.1023 [in Russian].Google Scholar
Makovicky, E. and Karup-Møller, S. (1997) The phase system Fe–Ir–S at 1100, 1000 and 800°C. Mineralogical Magazine, 63(3), 379385.Google Scholar
Malitch, K.N. and Kogarko, L.N. (2011) Chemical composition of platinum-group minerals from the Bor-Uryakh Massif, Maimecha-Kotui Province, Russia. Doklady Earth Sciences, 440, Part 2, 14551459.Google Scholar
Marchesi, C., Garridob, C.J., Proenza, J.A., Hidas, K., Varas-Reus, M.I., Butjosa, L. and Lewis, J.F. (2016) Geochemical record of subduction initiation in the sub-arc mantle: Insights from the Loma Caribe peridotite (Dominican Republic). Lithos, 252–253, 115.Google Scholar
McDonald, A.M., Proenza, J.A., Zaccarini, F., Rudashevsky, N.S., Cabri, L.J., Stanley, C.J., Rudashevsky, V.N., Melgarejo, J.C., Lewis, J.F., Longo, F. and Bakker, R.J. (2010) Garutiite, (Ni,Fe,Ir), a new hexagonal polymorph of native Ni from Loma Peguera, Dominican Republic. European Journal of Mineralogy, 22, 293304.Google Scholar
Mochalov, A.G., Dmitrenko, G.G., Rudashevsky, N.S., Zhernovsky, I.V. and Boldyreva, M.M. (1998) Hexaferrum (Fe,Ru), (Fe,Os), (Fe,Ir) – a new mineral. Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva, 127(5), 4151 [in Russian].Google Scholar
Proenza, J.A., Zaccarini, F., Rudashevsky, N., Cabri, L.J., Garuti, G., Rudashevsky, V., Lewis, J.F., Longo, F., Galı, S., Labrador, M., Tauler, E. and Bloise, G. (2008) Platinum Group Minerals (PGM) in Ni-laterites from Falcondo (Central Dominican Republic). Macla, 9, 199.Google Scholar
Raub, E., Loebich, O. and Beeskow, H. (1964) Die Struktur der festen Eisen-Iridium-Legierungen. Zeitschrift für Metallkunde, 55, 367–70.Google Scholar
Savitsky, E.M. (editor) (1984) The Noble Metals. Metallurgiya press, Moscow, 592 pp. [in Russian].Google Scholar
Stockman, H.W. and Hlava, P.F. (1984) Platinum-group minerals in Alpine chromitites from southwestern Oregon. Economic Geology, 79, 491508.Google Scholar
Swartzendruber, L.J. (1984) The Fe-Ir (iron-iridium) system. Bulletin of Alloy Phase Diagrams, 5(1), 4852.Google Scholar
Swartzendruber, L.J. and Sundman, B. (1983 a) The Fe-Ru (iron ruthenium) system. Bulletin of Alloy Phase Diagrams, 4, 155160.Google Scholar
Swartzendruber, L.J. and Sundman, B. (1983 b) The Fe-Os (iron osmium) system. Bulletin of Alloy Phase Diagrams, 4, 396399.Google Scholar
Swartzendruber, L.J., Itkin, V.P. and Alcock, C.B. (1991) The Fe-Ni (iron-nickel) system. Journal of Phase Equilibria, 12(3), 288312.Google Scholar
Yang, C.-W., Williams, D.B. and Goldstein, J.I. (1996) A revision of the Fe-Ni phase diagram at low temperatures (<400°C). Journal of Phase Equilibria, 17(6), 522531.Google Scholar
Yu, Z. (1995) Chengdeite – ordered natural iron-iridium alloy. Acta Mineralogica Sinica, 15, 58.Google Scholar
Supplementary material: PDF

Cabri and Aiglsperger supplementary material 1

Cabri and Aiglsperger supplementary material

Download Cabri and Aiglsperger supplementary material 1(PDF)
PDF 1.4 MB