Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T07:43:35.794Z Has data issue: false hasContentIssue false

A Raman microprobe study of natural micas

Published online by Cambridge University Press:  05 July 2018

A. Tlili
Affiliation:
Laboratoire de Minéralogie, Muséum National d'Histoire Naturelle, 61 rue de Buffon, 75005 Paris, France
D. C. Smith
Affiliation:
Laboratoire de Minéralogie, Muséum National d'Histoire Naturelle, 61 rue de Buffon, 75005 Paris, France
J.-M. Beny
Affiliation:
CNRS-CRSCM, 1A rue de la Férollerie, 45071 Orléans, France
H. Boyer
Affiliation:
ISA Jobin-Yvon, 16–18 rue du Canal, 91160 Longjumeau, France

Abstract

A wide range of natural K-, Na-, Ca- or (K + Li)-micas have been systematically examined by Raman spectrometry. The spectra are interpretable in terms of regular variations in peak positions and chemical parameters. Several vibrations give higher wavenumbers for Na-micas compared to K-micas, in accord with the smaller ionic size of Na+ than K+. The ≈195 cm-1 and ≈270 cm-1 peak wavenumbers and intensities vary as functions of the chemistry of the octahedral sites, i.e. the replacement of Mg2+ by Mn2+, Zn2+, Cr3+, Fe3+, Ti4+, and especially by Al3+, or by a vacancy, and the replacement of (OH)- by F-. The group of ≈700 cm-1 peaks vary in wavenumber and intensity with the replacement of Si by Al in the tetrahedra; distinct Si-O-Si and Si-O-Al vibrations can be recognized. Di- and tri-octahedral micas are distinguished on the basis of certain relative peak intensities which vary considerably with polarization direction, and of trends with increasing Al(iv), Al(vi) or Al(tot.). Calibration of these trends for the chemical analysis of mica microinclusions seems feasible once the uncertainties in the data set are resolved by the determination of further samples selected to highlight the effect of specific elements.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S. W. (1984a) Classification and structures of the micas. In Micas (Bailey, S. W., ed.) Reviews in Mineralogy, 13, Min. Soc. Am., 1-12.CrossRefGoogle Scholar
Bailey, S. W. (1984b) Crystal chemistry of the true micas. Ibid. 13-60.CrossRefGoogle Scholar
Boyer, H. and Smith, D. C. (1984) Petrological applications of the Raman microprobe (RMP) to the characterisation of micron-sized minerals in eclogites. In Microbeam Analysis 1984 (Romig, A. D. and Goldstein, J. I., eds.), San Francisco, 1010.Google Scholar
Boyer, H. and Smith, D. C., Chopin, C. and Lasnier, B. (1985a) Raman microprobe (RMP) determinations of natural and synthetic coesite. Phys. Chem. Minerals 12, 45-8.Google Scholar
Boyer, H. and Smith, D. C., Chopin, C. and Lasnier, B. and Guyot, F. (1985b) RMP (Raman microprobe) characterisation of micron-sized run products in high P-T experimental mineralogy. 1985 Pittsburgh Conference and Exposition on Analytical Chemistry and Applied Spectroscopy p. 1244.Google Scholar
Boyer, H. and Smith, D. C., Chopin, C. and Lasnier, B. and Guyot, F., Pinet, M. and Smith, D. C. (1988) The Raman microspectrometry of synthetic garnets in the system pyrope-almandine-grossular: a new technique for the non-destructive chemical analysis of garnet microinclusions. In 11th Internat. Conf. Raman Spectroscopy (1CORS) London (Clark, R. J. H. and Long, D. A., eds.) J. Wiley, pp. 915-6.Google Scholar
Clemens, J. D., Sircone, S., Navrotsky, A. and McMillan, P. F. (1987) Phlogopite: High temperature solution calorimetry, thermodynamic properties, Al-Si and stacking disorder, and phase equilibria. Geochim. Cosmochim. Acta 51, 2569-78.CrossRefGoogle Scholar
Délé-Dubois, M.-L., Dhamelincourt, P. and Schubnel, H.-J. (1980) Etude par spectroscopie Raman d'inclusions dans les diamants, saphirs et émeraudes. Rev. Gemm. a.f.g. No.64, 13-6.Google Scholar
Donnay, G., Donnay, J. D. H. and Takeda, H. (1964) Trioctahedral one-layer micas. II. Prediction of the structure from composition and cell dimensions. Acta Crystallogr. 17, 1374-81.CrossRefGoogle Scholar
Farmer, V. C. (1974) The layer silicates. In Infrared Spectra of Minerals. (Farmer, V. C., ed.) Min. Soc. London, 539pp.CrossRefGoogle Scholar
Farmer, V. C. and Velde, B. (1973) Effects of structural order and disorder on the infrared spectra of brittle micas. Mineral. Mag. 39, 282-8.CrossRefGoogle Scholar
Franz, G., Thomas, S. and Smith, D. C. (1986) Highpressure phengite decomposition in the Weissenstein eclogite, Munchberger Gneiss Massif, Germany. Contrib. Mineral. Petrol. 92, 71-85.CrossRefGoogle Scholar
Giese, R. F. Jr. (1984) Electrostatic energy models of micas. In Micas (Bailey, S. W., ed.) Reviews in Mineralogy 13, Min. Soc. Am., 105-44.CrossRefGoogle Scholar
Griffith, W. P. (1975) Raman spectroscopy of terrestrial minerals. In Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals (Karr, C., ed.) Academic Press N. Y., pp. 299323.CrossRefGoogle Scholar
Guggenheim, S. (1984) The brittle micas. In Micas (Bailey, S. W., ed.) Reviews in Mineralogy 13, Min. Soc. Am., 61104.CrossRefGoogle Scholar
Guggenheim, S. and Bailey, S. W. (1975) Refinement of margarite structure in the subgroup symmetry. Am. Mineral 60, 1023-9.Google Scholar
Haley, L. V., Wylie, I. W. and Koningstein, J. A. (1982) An investigation of the lattice and interlayer water vibrational spectral regions of muscovite and vermiculite using Raman microscopy. J. Raman Spec. 13, 203-5.CrossRefGoogle Scholar
Ishii, M., Shimanouchi, T. and Nakahira, M. (1967) Far infrared absorption spectra of layer silicates. Inorg. Chem. Acta 1, 387-92.CrossRefGoogle Scholar
Ishii, M., Shimanouchi, T. and Nakahira, M., Nakahira, M. and Takeda, H. (1969) Far infrared absorption spectra of micas. 1969 International Clay Conference. Google Scholar
Knurr, R. A. and Bailey, S. W. (1986) Refinement of Mn-substituted muscovite and phlogopite. Clays Clay Minerals 34, 7-16.CrossRefGoogle Scholar
Langer, K., Chatterjee, N. D. and Abraham, K. (1981) Infrared studies of some synthetic and natural 2M1 dioctahedral micas. Neues Jahrb. Mineral. Abh. 142, 91-110.Google Scholar
Liu, X. F., Robert, J.-L., Bény, J.-M. and Hardy, M. (1987) Raman spectrometry of (OH) groups in synthetic trioctahedral sodium micas: comparison with infrared and thermogravimetric data. Terra Cognita 7, 17.Google Scholar
Livi, K. J. T. and Veblen, D. R. (1987) ‘Eastonite’ from Easton, Pennsylvania: A mixture of phlogopite and a new form of serpentine. Am. Mineral. 72, 113-25.Google Scholar
Loh, E. (1973) Optical vibrations in sheet silicates. J. Phys. C: Solid State Phys. 6, 1091-104.CrossRefGoogle Scholar
Moore, R. K. and White, W. B. (1971) Vibrational spectra of the common silicates: I. The garnets. Am. Mineral. 56, 54-71.Google Scholar
Naumann, A. W., Safford, G. J. and Mumpton, F. A. (1966) Low-frequency (OH)-motions in layer silicate minerals. Clays Clay Minerals 14, 367-83.CrossRefGoogle Scholar
Ohashi, H. and Sekita, M. (1982) Raman spectroscopic study of the Si-O-Si stretching vibration in clinopyroxenes. J. Japan. Assoc. Min. Petrol. Econ. Geol. 77, 455-9.CrossRefGoogle Scholar
Ohashi, H. and Sekita, M. (1983) Raman spectroscopic study of clinopyroxenes in the join CaScAlSiO66-CaTiAl2O6. Ibid. 78, 239-45.Google Scholar
Pinet, M., Smith, D. C. and Boyer, H. (1987) Raman fingerprinting of opaque and semi-opaque minerals: The natural system Geikielite-Ilmenite-Pyrophanite (GIP). Terra Cognita 7, 18.Google Scholar
Robert, J.-L. (1981) Etudes cristallochimiques sur les micas et les amphiboles: applications à la pétrographie et à la géochimie. Thèse d'Etat, Université Paris XI, 206pp.Google Scholar
Robert, J.-L. and Gaspérin, M. (1985) Crystal structure refinement of hendricksite, a Zn- and Mn-rich trioctahedral potassium mica: a contribution to the crystal chemistry of zinc-bearing minerals. Tscherm. Min. Petr. Mitt. 34, 1-14.CrossRefGoogle Scholar
Robert, J.-L. and Gaspérin, M. and Kodama, H. (1988) Generalization of the correlations between hydroxyl-stretching wavenumbers and composition of micas in the system K2O-MgO-Al2O3-SiO2-H2O: a single model for trioctahedral and dioctahedral micas. Am. J. Sci. 288A, Wones Volume, 196212.Google Scholar
Robert, J.-L. and Gaspérin, M. and Kodama, H., Bény, J.-M., Volfinger, M. and Monier, G. (1987) Characterization of lepidolites by Raman Spectrometry: examples chosen on synthetic micas. Terra Cognita 7, 19.Google Scholar
Robert, J.-L. and Gaspérin, M. and Kodama, H., Bény, J.-M., Volfinger, M. and Monier, G., Bény, C. and Volfinger, M. (1988) Raman and infrared characterization of hydroxyl-lepidolites. Part I: Relationships between OH-stretching wavenumbers and compositions. Can. Mineral. (in press).Google Scholar
Rosasco, G. J. and Blaha, J. J. (1980) Raman microprobe spectra and vibrational mode assignments of talc. Applied Spectroscopy 34, 140-4.CrossRefGoogle Scholar
Rossman, G. R. (1984) Spectroscopy of micas. In Micas (Bailey, S. W., ed.) Reviews in Mineralogy 13, Min. Soc. Am., 145-81.CrossRefGoogle Scholar
Serratosa, J. M. and Bradley, W. F. (1958) Determination of the orientation of OH bond axes in layer silicates by infrared absorption. J. Phys. Chem. 62, 1164-7.CrossRefGoogle Scholar
Shannon, R. D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Crystallogr. 32, 751-67.CrossRefGoogle Scholar
Sharma, S. K., Simons, B. and Yoder, H. S. Jr. (1983) Raman study of anorthite, calcium Tschermak's pyroxene, and gehlenite in crystalline and glassy states. Am. Mineral. 68, 1113-25.Google Scholar
Shimanouchi, T., Tsuboi, M. and Miyazawa, T. (1961) Optically active lattice vibrations as treated by GF-Matrix Method. J. Chem. Phys. 35, 1597-612.CrossRefGoogle Scholar
Smith, D. C. (1988) A review of the peculiar mineralogy of the ‘Norwegian coesite-eclogite province’, with crystal-chemical, petrological, geochemical, and geodynamical notes and an extensive bibliography. In Eclogites and Eclogite-Facies Rocks (Smith, D. C., ed.) Elsevier, Amsterdam, 1206.Google Scholar
Smith, D. C. and Boyer, H. (1985) Raman microprobe fingerprinting of ordered and disordered pyroxenes in the system diopside-omphacite-jadeite. Terra Cognita 5, 429.Google Scholar
Smith, D. C. and Boyer, H. (1987) An exploration of the Raman spectra of several natural high-pressure amphiboles. Ibid. 7, 21.Google Scholar
Smith, D. C. and Boyer, H. and Pinet, M. (1985) Petrochemistry of opaque minerals in eclogites from the Western Gneiss Region, Norway. II: Chemistry of the ilmenite mineral group. Chem. Geol. 50, 251-66.CrossRefGoogle Scholar
Smith, D. C. and Boyer, H. and Pinet, M., Tlili, A., Boyer, H. and Bény, J.-M. (1987) Raman spectroscopy of phylloscilicates: II. Natural sodium micas, and crystal chemical comparisons with potassium micas. Terra Cognita 7, 22.Google Scholar
Smith, D. C. and Boyer, H. and Pinet, M., Tlili, A., Boyer, H. and Bény, J.-M., Pinet, M. and Boyer, H. (1988) Raman spectra of ternary pyralspite garnets and their preliminary calibration for the chemical analysis of synthetic or natural micron-sized crystals. Ibid. 8, 77-8.Google Scholar
Tlili, A., Smith, D. C., Bény, J.-M. and Boyer, H. (1987) Raman spectroscopy of phyllosilicates: I. Natural potassium micas. Ibid. 7, 22.Google Scholar
Tlili, A., Smith, D. C., Bény, J.-M. and Boyer, H., Robert, J.-L. and Beny, J.-M. (1988) The distinction of Si-O-Si and Si-O-Al vibrations in natural and synthetic di- and tri-octahedral K-Na-micas. Ibid. 8, 78.Google Scholar
Van Der Marel, H. W. and Beutelspacher, H. (1976) Atlas of infrared spectroscopy of clay minerals and their admixtures. Elsevier, Amsterdam.Google Scholar
Vedder, W. (1964) Correlations between infrared spectrum and chemical composition of mica. Am. Mineral. 49, 736-68.Google Scholar
Vedder, W. and McDonald, R. S. (1963) Vibrations of the OH ions in muscovite. J. Chem. Phys. 38, 1583-90.CrossRefGoogle Scholar
Velde, B. (1978) Infrared spectra of synthetic micas in the series muscovite-MgAl celadonite. Am. Mineral. 63, 343-9.Google Scholar
Velde, B. and Couty, R. (1985) Far infrared spectra of hydrous layer silicates. Phys. Chem. Minerals 12, 347-52.CrossRefGoogle Scholar
White, W. B. (1975) Structural interpretation of lunar and terrestrial minerals by Raman spectroscopy. In Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals (Karr, C., ed.) Academic Press N.Y. pp. 325-58.CrossRefGoogle Scholar
White, W. B. (1986) Raman spectra of silicate minerals. 14th General Meeting International Mineralogical Association, Stanford U.S.A.Google Scholar
Zussman, J. (1979) The crystal chemistry of the micas. Bull. Mineral. 102, 5-13.Google Scholar