Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-27T23:07:46.306Z Has data issue: false hasContentIssue false

Pyroxenes and coexisting minerals in the Cheviot granite

Published online by Cambridge University Press:  05 July 2018

H. W. Haslam*
Affiliation:
British Geological Survey, 154 Clerkenwell Road, London EC1R 5DU

Abstract

Orthopyroxene and clinopyroxene, with biotite, are widespread in the high-level Cheviot granite, while amphibole is rare. The pyroxene compositions are very close to (Mg,Fe)2Si2O6 and Ca(Mg,Fe)Si2O6. Biotite compositions, with low Si and Al, are characteristic of biotites coexisting with pyroxenes. Geothermometric estimates based on oxide and pyroxene compositions show that present mineral compositions result from post-consolidation equilibration.

Type
Silicate mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, G.C. and Locke, C.A. (1979) Earth Planet. Sci. Lett, 45, 69-79.CrossRefGoogle Scholar
Cassidy, J., Tindle, A.G., and Hughes, D.J. (1979) J. Geol. Soc. London, 136, 745-53.Google Scholar
Buddington, A.F., and Lindsley, D.H. (1964) J. Petrol, 5, 310-57.CrossRefGoogle Scholar
Carruthers, R.G., Burnett, G.A., and Anderson, W. (1932) The Geology of the Cheviot Hills.Mem. Geol. Surv. G.B.Google Scholar
Czamanske, G.K. (1965) J. Geol, 73, 293-322.CrossRefGoogle Scholar
Czamanske, G.K. -and Mihalik, P. (1972) J. Petrol, 13, 493-509.CrossRefGoogle Scholar
Czamanske, G.K. and Wones, D.R. (1973. Ibid. 14, 349-80.CrossRefGoogle Scholar
Haslam, H.W. (1968. Ibid. 9, 84-104.CrossRefGoogle Scholar
Haslam, H.W. (1975) Rep. Inst. Geol. Sci.75/6.Google Scholar
Haslam, H.W. and Kimbell, G.S. (1981) Mineral Reconnaissance Programme Rep. Inst. Geol. Sci.No. 43.Google Scholar
Jhingran, A.G. (1943) Q. J. Geol. Soc. London, 98, 241-54.CrossRefGoogle Scholar
Kynaston, H. (1899) Trans. Geol. Soc. Edinb, 7, 390-415.CrossRefGoogle Scholar
Leake, R.C. and Haslam, H.W. (1978) Rep. Inst. Geol. Sci.78/4.Google Scholar
Lindsley, D.H. (1983) Am. Mineral, 68, 477-93.Google Scholar
Nockolds, S.R. (1947) Am. J. Sci, 245, 401-20.CrossRefGoogle Scholar
Nockolds, S.R. and Mitchell, R.L. (1948) Trans. R. Soc. Edinb, 61, 533-75.CrossRefGoogle Scholar
Pankhurst, R.J. (1979) In Origin of granite batholiths; geochemical evidence (M. P. Atherton and J. Tarney, eds.). Shiva Publishing Ltd. 1833.CrossRefGoogle Scholar
Plant, J.A., Brown, G.C. Simpson, P.R., and Smith, R.T. (1980) Trans. Inst. Mining Metall. (Sect. B. Appl. Earth Sci.), 89, B198210.Google Scholar
Read, H.H. (1961) Lpool. Manchr. Geol. J, 2, 653-83.CrossRefGoogle Scholar
Stephens, W.E., Whitley, J.E., Thirlwall, M.F., and Halliday, A.N. (1985) Contrib. Mineral. Petrol, 89, 226-38.CrossRefGoogle Scholar
Streckeisen, A. (1976) Earth Sci. Rev, 12, 1-33.CrossRefGoogle Scholar
Teall, J.J.H. (1885) Geol. Mag.Ser. 3, 2, 106-21.Google Scholar

A correction has been issued for this article: