Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T22:30:37.253Z Has data issue: false hasContentIssue false

Preferred orientation of experimentally deformed Mt Isa chalcopyrite ore

Published online by Cambridge University Press:  05 July 2018

E. M. Jansen
Affiliation:
Institut für Mineralogie und Lagerstättenlehre, RWTH Aachen, 5100 Aachen, Germany
H. Siemes
Affiliation:
Institut für Mineralogie und Lagerstättenlehre, RWTH Aachen, 5100 Aachen, Germany
P. Merz
Affiliation:
Mineralogisches Institut, Universität Bonn, Auβenstelle Forschungszentrum Jülich (KFA), 5170 Jülich, Germany
W. Schäfer
Affiliation:
Mineralogisches Institut, Universität Bonn, Auβenstelle Forschungszentrum Jülich (KFA), 5170 Jülich, Germany
G. Will
Affiliation:
Mineralogisches Institut, Universität Bonn, Auβenstelle Forschungszentrum Jülich (KFA), 5170 Jülich, Germany
M. Dahms
Affiliation:
Folschungszentrum Geesthacht (GKSS), Max-Planck-Straβe, 2054 Geesthacht, Germany

Abstract

Chalcopyrite samples from Mt Isa, Australia have been experimentally shortened by up to 30% at temperatures up to 450°C at a constant confining pressure of 300 (400) MPa, and different strain rates in the range from 10-5 to 10-8 sec-1. After deformation, the X-ray pole figures show a maximum of (220/204) perpendicular to the compression axis for each of the samples, which has already been described for room temperature experiments by Lang (1968). The overlapping pseudocubic peaks of chalcopyrite can be separated into true tetragonal peaks by neutron diffraction texture analysis using a position sensitive detector combined with profile analysis (Will et al., 1989). The five investigated samples each show a combination of two or four main orientations of the crystallites, which represent neither a pseudocubic nor a tetragonal fibre texture.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkinson, B. K. (1974) Experimental deformation of polycrystalline galena, chalcopyrite and pyrrhotite. Inst. Mining Metallurgy Trans., 83, B19-28.Google Scholar
Couderc, J. J. and Hennig-Michaeli, C. (1988) TEM evidence of various glide modes in experimentally strained CuFeS2 crystals. Phil. Mag., A57, 301-25.Google Scholar
Cox, S. F. and Etheridge, M. A. (1984) Deformation microfabric development in chalcopyrite in fault zones, Mt Lyell, Tasmania. J. Struct. Geol., 6, 167–82.Google Scholar
Dahms, M. (1992) The iterative series expansion method for quantitative texture analysis—Part II: Applications. J. Appl. Cryst., 25, 258457.Google Scholar
Dahms, M. and Bunge, H.-J. (1989a) A positivity method for the determination of complete orientation distribu-tion functions. Textures and Microstructures, 10, 2135.Google Scholar
Dahms, M. and Bunge, H.-J. (1989b) The iterative series expansion method for quantitative texture analyis. I. General outline. J. Appl. Cryst., 22, 439–47.Google Scholar
Jansen, E. M. (1990) Experimentelle Deformation yon natiirlichem, polykristallinem Chalkopyrit bei Tem-peraturen bis 450°C und Verformungsten yon 10-5 bis 10-8 si unter besonderer Beriicksichtigung der entste-henden Texturen. Dissertation RWTH (Unpubl.) Aachen, 148 pp.Google Scholar
Jansen, E. M. Merz, P., Siemes, H., and Will, G. (1991) Interpretation of preferred orientation in naturally and experimentally deformed chacopyrite ores by neutron diffraction texture analysis. Textures and Micro- structures, 14-18, 431-6 (Special Issue: Ninth Int. Conf. Text. Mat. (Icotom 9), Avignon 1990, eds. Esling, C. and Penelle, R.).Google Scholar
Jansen, E. M. Merz, P., Schaeben, H., Schiller, W., Siemes, H., and Will, G. (1992) Determination of preferred orientation of pyrite in a chalcopyrite ore by means of neutron diffraction. Textures and Microstructures, 19, 203–10.Google Scholar
Kelly, W. C. and Clark, B. R. (1975) Sulfide deforma-tion studies III. Experimental deformation of chalcopyrite to 2000 bars and 500°C Econ. Geol., 70, 431–53.Google Scholar
Lang, H. (1968) Stauchversuche mit polykristallinen Kupferkiesen und deren Ergebnisse unter Beriicksichtigung der Gefiigeregelung. Dissertation RWTH Aachen (Unpubl.), 131 pp.Google Scholar
Matthies, S., Helming, K., and Kunze, K. (1990a) On the representation of orientation distributions in texture analysis by o-sections. I. General properties of o-sections. Phys. Stat. Sol., B157, 71-83.Google Scholar
Matthies, S., Helming, K., and Kunze, K. (1990b) On the representation of orientation distributions in texture analysis by o-sections. II. Considerations of crystal and sample symmetry, examples. Ibid., 489-507.Google Scholar
Miigge, O. (1920) Über Translationen am Schwefel, Periklas und Juperferkies und einfache Schiebungen am Bournonit, Pyrargyrit, Jupferglanz und Silber-kupferglanz. Neues Jahrb. Min., 24-54.Google Scholar
Roscie, W. E. (1975) Experimental deformation of natural chalcopyrite at temperatures up to 300°C over the strain rate range 102 to 106 sec-1. Econ. Geol., 70, 454–72.Google Scholar
Will, G., Schäfer, W., and Merz, P. (1989) Texture analysis by neutron diffraction using a linear position sensitive detector. Textures and Microstructures, 10, 375–87.Google Scholar