Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T02:59:56.387Z Has data issue: false hasContentIssue false

Potassic-magnesio-arfvedsonite, KNa2(MgFe2+Fe3+)5Si8O22(OH)2: mineral description and crystal chemistry

Published online by Cambridge University Press:  02 July 2018

Momchil Dyulgerov*
Affiliation:
Faculty of Geology and Geography, Sofia University ‘St. Kliment Ohridski’, Tsar Osvoboditel Blvd. 15, Sofia 1504, Bulgaria
Roberta Oberti
Affiliation:
CNR-Istituto di Geoscienze e Georisorse, UOS Pavia, via Ferrata 1, I-27100 Pavia, Italy
Bernard Platevoet
Affiliation:
Universite Paris-Sud, Bat. 504, Orsay 91405, France
Milen Kadiyski
Affiliation:
Institute for Mineralogy and Crystallography, Bulgarian Academy of Science, Georgi Bonchev Str., bl. 107, Sofia 1113, Bulgaria
Ventzislav Rusanov
Affiliation:
Faculty of Physics, Sofia University ‘St. Kliment Ohridski’ James Bourchier Blvd 5, Sofia 1164, Bulgaria
*
*Author for correspondence: Momchil Dyulgerov, Email: [email protected]

Abstract

The complete mineral description of potassic-magnesio-arfvedsonite, a recently approved (IMA2016-083) new species of the amphibole supergroup is provided using electron microprobe analysis (EMPA), laser ablation inductively coupled plasma mass spectrometry, single-crystal structure refinement, Mössbauer and Raman spectroscopy, as well as measurement of optical and physical properties. The holotype material was found in syenitic and granitic dyke rocks in association with quartz, potassium feldspar and aegirine–augite from the Buhovo–Seslavtsi pluton, Bulgaria. Potassic-magnesio-arfvedsonite is monoclinic C2/m, with unit-cell parameters: a = 9.9804(11), b = 18.0127(19), c = 5.2971(6) Å, β = 104.341(2)° and V = 922.61 Å3. In transmitted plane-polarised light (λ = 590 cm–1), potassic-magnesio-arfvedsonite is pleochroic: X = yellow pale-green, Y = green and Z = dark-violet brown. It is biaxial (–), α = 1.645(2), β = 1.655(2), γ = 1.660(2) and 2Vmeas. = 60° and 2Vcalc. = 70°. The empirical unit formula obtained from EMPA and structure refinement is A(K0.86Na0.0.08)0.94B(Na1.74Ca0.25 Mn2+0.01)2.00C(Mg2.67Fe2+1.42Fe3+0.76Ti0.12Mn2+0.03)5.00TSi8O22W(OH1.58F0.22O0.20)2.00. The Fe3+/Fetot ratio (0.35) is consistent with both the Mössbauer spectra and the single-crystal structure refinement. The 10 strongest X-ray powder reflections [d values (in A°), I, (hkl)] are: 8.519, 80.5, (110); 3.402, 67.3, (131); 3.295, 41.0, (240); 3.173, 65.0, (310); 2.752, 35.6, ($\bar{3}$31); 2.715, 100.0 (151); 2.591, 44.1, (061); 2.542, 73.2, ($\bar{2}$02); 2.348, 38.5, ($\bar{3}$51); 2.174, 42.0, (261). Potassic-magnesio-arfvedsonite is the product of strongly peralkaline and potassic (perpotassic) magma compositions. Trace-element analysis shows that this amphibole did not exert significant control on trace-element distribution in the crystallising peralkaline magma.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Oleg I Siidra

References

Allan, M.M., Yardley, B.W.D., Forbes, L.J., Shmulovich, K.I., Banks, D.A. and Shepherd, T.J. (2005): Validation of LA-ICP-MS fluid inclusion analysis with synthetic fluid inclusions. American Mineralogist, 90, 17671775.Google Scholar
Bazhenov, A.G., Nedosekova, I.L., Krinova, T.V., Mironov, A.B. and Khvorov, P.V. (2000) Fluormagnesioarfvedsonite NaNa2(Mg,Fe2+)4Fe3+[Si8O22](F,OH)2 – a new mineral species of the amphibole group (Il'meni-Vishnevye mountains alkaline massif, the South Urals). Zapiski Rosiiskogo Mineralogicheskogo Obshtestva (Proceedings of the Russian Mineralogical Society), 129, 2831.Google Scholar
Bruker, (2003) SAINT Software Reference Manual. Ver. 6. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Della Ventura, G., Maras, A. and Parodi, G.C. (1983) Potassium-fluorrichterite from Monte Somma (Campania, Italy). Periodico di Mineralogia, 52, 617630.Google Scholar
Dimitrov, S. (1935) Die eruptivgesteine oberhalb von Seslavtci und Buhovo (nordöstlich von Sofia). Annuaire de l'Université de Sofia, Science Natural, 33, 189246 [in Bulgarian with German abstract].Google Scholar
Dyulgerov, M.M. (2005) Le Plutonisme de Tendance Alcaline Potassique de Stara Planina, Bulgarie: Étude Pétrologique des Complexes de Buhovo-Seslavtzi, Svidnya et Shipka. PhD Dissertation, Université Paris-XI, France, 310 pp.Google Scholar
Dyulgerov, M. and Platevoet, B. (2006) Unusual Ti and Zr aegirine-augite and potassic magnesio-arfvedsonite in the peralkaline potassic rocks from Buhovo-Seslavtzi complex, Bulgaria. European Journal of Mineralogy, 18, 127138.Google Scholar
Ernst, W.G. (1968) Amphiboles. Crystal Chemistry, Phase Relations and Occurrence. Springer-Verlag, New York. 128 pp.Google Scholar
Hall, A. (1982) The Pendennis peralkaline minette. Mineralalogical Magazine, 45, 257266.Google Scholar
Hogarth, D.D. (2019) Polarized Raman spectroscopy and lattice dynamics of potassic-magnesio-arfvedsonite. Physics and Chemistry of Minerals, 46, 181191.Google Scholar
Hogarth, D.D. and LaPointe, P. (1984) Amphibole and pyroxene development in fenite from Cantley, Quebec. The Canadian Mineralogist, 22, 281295.Google Scholar
Ivanov, V.G., Dyulgerov, M. and Oberti, R. (2019) Polarized Raman spectroscopy and lattice dynamics of potassic-magnesio-arfvedsonite. Physics and Chemistry of Minerals, 46, 181191.Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G.M. and Dietmar Stalke, D. (2015) Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. Journal of Applied Crystallography, 48, 310.Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship: Part lV. The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Matsubara, S., Miyawaki, R., Kurosawa, M. and Suzuki, Y. (2002) Potassicleakite, a new amphibole from the Tanohata mine, Iwate prefecture, Japan. Journal of Mineralogical and Petrological Sciences, 97, 177184.Google Scholar
Mitchell, R.H. and Vladykin, N.V. (1996) Compositional variation of pyroxene and mica from the Little Murun ultrapotassic complex, Aldan Shield, Russia. Mineralogical Magazine, 60, 907925.Google Scholar
Oberti, R., Hawthorne, F.C., Cannillo, E. and Camara, F. (2007) Long-range order in amphiboles. Pp. 125171 in: Amphiboles: Crystal Chemistry, Occurrence and Health Issues, (Hawthorne, F.C., Oberti, R., Della Ventura, G. and Mottana, A., editors). Reviews in Mineralogy and Geochemistry, 67. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Oberti, R., Boiocchi, M., Smith, D.C., Medenbach, O. and Helmers, H. (2008) Potassic-aluminotaramite from Sierra de los Filabres, Spain. European Journal of Mineralogy, 20, 10051010.Google Scholar
Oberti, R., Boiocchi, M., Hawthorne, F.C. and Robinson, P. (2010) Crystal structure and crystal chemistry of fluoro-potassic-magnesio-arfvedsonite from Monte Metocha, Xixano region, Mozambique, and discussion of the holotype from Quebec, Canada. Mineralogical Magazine, 74, 951960.Google Scholar
Oberti, R., Boiocchi, M., Hawthorne, F.C., Ball, N.A. and Harlow, G.E. (2015) Magnesio-arfvedsonite from Jade Mine Tract, Myanmar: mineral description and crystal chemistry. Mineralogical Magazine, 79, 2, 253260.Google Scholar
Pekov, I.V., Chukanov, N.V., Lebedeva, I.S., Pushcharovsky, D.Y., Ferraris, G., Gula, A., Zadov, A.E., Novakova, A.A. and Petersen, O.V. (2004) Potassicarfvedsonite, KNa2Fe2+4Fe3+Si8O22(OH)2, a K-dominant amphibole from agpaitic pegmatites. Mineral data, structural refinement and disorder in the A site. Neues Jahrbuch fur Mineralogie Monatshefte, 12, 555574.Google Scholar
Perchuk, L.L., Safonov, O.G., Yapaskurt, V.O. and Barton, J.M. (2002) Crystal-melt equilibria involving potassium-bearing clinopyroxene as indicator of mantle-derived ultrahigh-potassic liquids: an analytical review. Lithos, 60, 88111.Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) ‘PAP’ φ(ρZ) procedure for improved quantitative microanalysis. Pp. 104160 in: Microbeam Analysis (Armstrong, J.T., editor). San Francisco Press, San Francisco, California, USA.Google Scholar
Robert, J.-L., Della Ventura, G., Raudsepp, M. and Hawthorne, F.C. (1993) Rietveld structure refinement of synthetic strontium-rich potassium-richterites. European Journal of Mineralogy, 5, 199206.Google Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172, 567570.Google Scholar
Saranchina, G.M. and Kozhevnikov, V.N. (1985) The Fedorov Method. Nedra, Leningrad. 208 pp. [in Russian].Google Scholar
Velde, D. (1967) Sur un lamprophyre hyperalcalin potassique: la minette de Sisco (île de Corse). Bulletin de la Société française de Minéralogie et Cristallographie, 90, 214223.Google Scholar
Wagner, C. and Velde, D. (1986) The mineralogy of K-richterite bearing lamproites. American Mineralogist, 71, 1737.Google Scholar
Supplementary material: File

Dyulgerov et al. supplementary material

Dyulgerov et al. supplementary material 1

Download Dyulgerov et al. supplementary material(File)
File 14.5 KB