Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T11:15:33.098Z Has data issue: false hasContentIssue false

Physical properties of synthetic and natural pyroxenes in the system diopside–hedenbergite–acmite

Published online by Cambridge University Press:  05 July 2018

J. Nolan*
Affiliation:
Department of Geology, The Johns Hopkins University, Baltimore, Maryland, U.S.A.

Summary

Unit cell dimensions and refractive indices have been determined for synthetic pyroxenes in the system CaMgSi2O6-CaFeSi2O6-NaFeSi2O6, which have been crystallized and annealed on the nickel-bunsenite (Ni-NiO) oxygen buffer curve at 700 °C and a total pressure of 2 kb. The data presented confirms the many postulates that a complete solid solution series does exist in the subsolidus region of the ‘ternary’ system. The unit cell dimensions show an almost linear change with composition between the end members. The determined cell parameters for a series of analysed natural alkali pyroxenes have been compared with the data for the synthetic pyroxenes and close agreement was found between both sets of data. The variation of the unit cell dimensions and refractive indices has been examined in relation to the possible ionic substitutions taking place in the pyroxenes.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Present address: The Department of Geology, Imperial College of Science and Technology, South Kensington, London SW. 7.

References

Aoki, (A. I.), 1964. Amer. Min. 49, 1199.Google Scholar
Brown, (G. M.), 1960. Ibid. 45, 15.CrossRefGoogle Scholar
Burnham, (C. W.), 1962. Carnegie Inst. Wash., Year Book, 61, 132.Google Scholar
Carmichael, (I. S. E.), 1962. Min. Mag. 33, 86.Google Scholar
Clark, (S. P.), Schairer, (J. F.), and Neufville, (J. de), 1962. Carnegie Inst. Wash. Year Book, 61, 59.Google Scholar
Coleman, (L. C.), 1962. Geol. Soc. Amer., Buddington volume, 429.Google Scholar
Emmons, (R. C.), 1926. Amer. Min. 11, 115.Google Scholar
Ernst, (W. G.), 1962. Journ. Geol. 70, 689.CrossRefGoogle Scholar
Eugster, (H. P.) and Wones, (D. R.), 1962. Journ. Petrology, 3, 82.CrossRefGoogle Scholar
Hori, (F.), 1954. Sci. Papers College Gen. Education, Univ. Tokyo, 4, 71.Google Scholar
King, (B. C.), 1965. Journ. Petrology, 6, 67.CrossRefGoogle Scholar
Kuno, (H.), 1955. Amer. Min. 40, 70.Google Scholar
Kuno, (H.) and Hess, (H. H.), 1953. Amer. Journ. Sci. 251, 741.CrossRefGoogle Scholar
Merwin, (H. E.), 1922. Journ. Amer. Chem. Soc. 44, 1970.Google Scholar
Milton, (C.) and Eugster, (H. P.), 1959. Researches in Geochemistry. New York (Wiley).Google Scholar
Nolan, (J.) and Edgar, (A. D.), 1963. Min. Mag. 33, 625.Google Scholar
Ostrovsky, (I. A.), 1946. Acad. Sci. USSR, D.S. Belyankin Jubilee volume, 505.Google Scholar
Roy, (R.), 1956. Journ. Amer. Ceram. Soc. 39, 145.CrossRefGoogle Scholar
Sabine, (P. A.), 1960. Bull. Geol. Surv. Gt. Britain, no. 16, 156.Google Scholar
Sakata, (Y.), 1957. Jap. Journ. Geol. Geogr. 28, 161.Google Scholar
Schüller, (K. H.), 1958. Beitr. Min. Petr. 6, 112.CrossRefGoogle Scholar
Turnock, (A. C.), 1962. Carnegie Inst. Wash. Year Book, 61, 82.Google Scholar
Tyler, (R. C.) and King, (B. C.), 1967. Min. Mag. 36, 5.Google Scholar
Vogt, (J. H. L.), 1924. Norsk. Vid. Akad. Oslo, Math. Nat. Kl. Sky. 15. Google Scholar
Washington, (H. S.) and Merwin, (H. E.), 1927. Amer. Min. 12, 233.Google Scholar
Yagi, (K.), 1953. Bull. Geol. Soc. Amer. 64, 769.CrossRefGoogle Scholar
Yagi, (K.), 1958. Journ. Min. Soc. Japan, 3, 763.Google Scholar
Yagi, (K.), 1962. Carnegie Inst. Wash. Year Book, 61, 98.Google Scholar
Yagi, (K.), 1966. Amer. Min. 51, 976.Google Scholar
[Zvetkov, (A. I.)] , 1945. (Mém. Soc. Russe Min.), set. 2, 74, 215.Google Scholar