Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T01:57:39.122Z Has data issue: false hasContentIssue false

Phenakite and bertrandite: products of post-magmatic alteration of beryl in granitic pegmatites (Tatric Superunit, Western Carpathians, Slovakia)

Published online by Cambridge University Press:  18 August 2022

Pavel Uher*
Affiliation:
Department of Mineralogy, Petrology and Economic Geology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
Daniel Ozdín
Affiliation:
Department of Mineralogy, Petrology and Economic Geology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
Peter Bačík
Affiliation:
Department of Mineralogy, Petrology and Economic Geology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia Earth Science Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
Martin Števko
Affiliation:
Earth Science Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
Martin Ondrejka
Affiliation:
Department of Mineralogy, Petrology and Economic Geology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
Olena Rybnikova
Affiliation:
Department of Mineralogy, Petrology and Economic Geology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
Štěpán Chládek
Affiliation:
Department of Geological Engineering, Faculty of Mining and Geology, VŠB – Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic
Jana Fridrichová
Affiliation:
Department of Mineralogy, Petrology and Economic Geology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
Jaroslav Pršek
Affiliation:
AGH University of Science and Technology, Department of Mineralogy, Petrography and Geochemistry, 30–059 Kraków, Mickiewicza 30, Poland
Ľubica Puškelová
Affiliation:
Earth Science Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
*
*Author for correspondence: Pavel Uher, Email: [email protected]

Abstract

The beryllium silicate minerals phenakite and bertrandite have been identified in granitic pegmatite dykes of the beryl-columbite subtype of Variscan age (~340−355 Ma), associated with S- to I-type granitic rocks of the Tatric Superunit, Western Carpathians (Slovakia). The two beryllium silicates and associated minerals were characterised by electron microprobe analysis, back-scattered electron petrography and cathodoluminescence imagery, X-ray diffraction and micro-Raman techniques. Phenakite and bertrandite form euhedral-to-anhedral crystals and aggregates in irregular domains and veinlets replacing primary magmatic beryl. A detailed textural study revealed a close genetic association of phenakite and bertrandite with secondary fine-grained quartz, K-feldspar and muscovite. Locally, clay phyllosilicate minerals, (with compositions similar to those of Fe-dominant hydrobiotite, beidellite, nontronite and saponite) occur as the youngest minerals. During the post-magmatic (hydrothermal) stage of the pegmatites, infiltration of aqueous K-bearing fluids at T ≈ 200–400°C resulted in the breakdown of magmatic beryl to secondary assemblages containing phenakite and bertrandite.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Edward Grew

References

Bačík, P., Fridrichová, J., Uher, P., Rybár, S., Bizovská, V., Luptáková, J., Vrábliková, D., Pukančík, L. and Vaculovič, T. (2019) Octahedral substitution in beryl from weakly fractionated intragranitic pegmatite Predné Solisko, Tatry Mountains (Slovakia): The indicator of genetic conditions. Journal of Geosciences, 64, 5972.CrossRefGoogle Scholar
Barton, M.D. (1986) Phase equilibria and thermodynamic properties of minerals in the BeO–Al2O3–SiO2–H2O (BASH) system, with petrologic applications. American Mineralogist, 71, 277300.Google Scholar
Barton, M.D. and Young, S. (2002) Non-pegmatitic deposits of beryllium: mineralogy, geology, phase equilibria and origin. Pp. 591691 in: Beryllium: Mineralogy, Petrology, and Geochemistry (Grew, E.S., editor). Reviews in Mineralogy and Geochemistry, 50. Mineralogical Society of America, Washington DC.CrossRefGoogle Scholar
Broska, I. and Svojtka, M. (2020) Early Carboniferous successive I/S granite magmatism recorded in the Malá Fatra Mountains by LA-ICP-MS zircon dating (Western Carpathians). Geologica Carpathica, 71, 391401.CrossRefGoogle Scholar
Broska, I. and Uher, P. (2001) Whole-rock chemistry and genetic typology of the West-Carpathian Variscan granites. Geologica Carpathica, 52, 7990.Google Scholar
Broska, I., Petrík, I., Béeri-Shlevin, Y., Majka, J. and Bezák, V. (2013) Devonian/Mississippian I-type granitoids in the Western Carpathians: A subduction-related hybrid magmatism. Lithos, 162–163, 2736.CrossRefGoogle Scholar
Burda, J. and Gawęda, A. (2009) Shear-influenced partial melting in the Western Tatra metamorphic complex: Geochemistry and geochronology. Lithos, 110, 373385.CrossRefGoogle Scholar
Burda, J., Gawęda, A. and Klötzli, U. (2013a) Geochronology and petrogenesis of granitoid rocks from the Goryczkowa Unit, Tatra Mountains (Central Western Carpathians). Geologica Carpathica, 64, 419435.CrossRefGoogle Scholar
Burda, J., Gawęda, A. and Klötzli, U. (2013b) U-Pb zircon age of the youngest magmatic activity in the High Tatra granites (Central Western Carpathians). Geochronometria, 40, 134144.CrossRefGoogle Scholar
Burt, D.M. (1975) Beryllium mineral stabilities in the model system CaO–BeO–SiO2–P2O5–F2O–1 and the breakdown of beryl. Economic Geology, 70, 12791292.CrossRefGoogle Scholar
Burt, D.M. (1978) Multisystems analysis of beryllium mineral stabilities: the system BeO–Al2O3–SiO2–H2O. American Mineralogist, 63, 664676.Google Scholar
Burt, D.M. and London, D. (1982) Subsolidus equilibria. Mineralogical Association of Canada Short Course Series, 8, 329346.Google Scholar
Cambel, B., Kráľ, J. and Burchart, J. (1990) Isotopic Geochronology of the Western Carpathian Crystalline Complex with Catalogue of Data. Veda Press, Bratislava, 184 pp. [in Slovak, English summary].Google Scholar
Černá, I., Černý, P., Selway, J.B. and Chapman, R. (2002) Paragenesis and origin of secondary beryllophosphates: Beryllonite and hydroxylherderite from the Bep granitic pegmatite, southeastern Manitoba, Canada. The Canadian Mineralogist, 40, 13391345.CrossRefGoogle Scholar
Černý, P. (2002) Mineralogy of beryllium in granitic pegmatites. Pp. 405444. in: Beryllium: Mineralogy, Petrology, and Geochemistry (Grew, E.S., editor). Reviews in Mineralogy and Geochemistry, 50. Mineralogical Society of America, Washington DC.CrossRefGoogle Scholar
Černý, P. and Ercit, T.S. (2005) The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43, 20052026.CrossRefGoogle Scholar
Chudík, P., Uher, P., Gadas, P., Škoda, R. and Pršek, J. (2011) Niobium-tantalum oxide minerals in the Jezuitské Lesy granitic pegmatite, Bratislava Massif, Slovakia: Ta to Nb and Fe to Mn evolutionary trends in a narrow Be,Cs-rich and Li,B-poor dike. Mineralogy and Petrology, 102, 1527.CrossRefGoogle Scholar
Dixon, A., Cempírek, J. and Groat, L.A. (2014) Mineralogy and geochemistry of pegmatites on Mount Begbie, British Columbia. The Canadian Mineralogist, 52, 129164.CrossRefGoogle Scholar
Downs, J.W. and Gibbs, G.V. (1987) An exploratory examination of the electron density and electrostatic potential of phenakite. American Mineralogist, 72, 769777.Google Scholar
Downs, J.W. and Ross, F.K. (1987) Neutron-diffraction study of bertrandite. American Mineralogist, 72, 979983.Google Scholar
Evensen, J.M., London, D. and Wendlandt, R.F. (1999) Solubility and stability of beryl in granitic melts. American Mineralogist, 84, 733745.CrossRefGoogle Scholar
Finger, F., Broska, I., Haunschmid, B., Hraško, L., Kohút, M., Krenn, E., Petrík, I., Riegler, G. and Uher, P. (2003) Electron-microprobe dating of monazites from Western Carpathian basement granitoids: Plutonic evidence for an important Permian rifting event subsequent to Variscan crustal anatexis. International Journal of Earth Sciences, 92, 8698.CrossRefGoogle Scholar
Franz, G. and Morteani, G. (1981) The system BeO–Al2O3–SiO2–H2O: Hydrothermal investigation of the stability of beryl and euclase in the range from 1 to 6 kb and 400 to 800 °C. Neues Jahrbuch für Mineralogie. Abhandlungen, 140, 273299.Google Scholar
Franz, G. and Morteani, G. (2002) Be-minerals: synthesis, stability, and occurrence in metamorphic rocks. Pp. 551589 in: Beryllium: Mineralogy, Petrology, and Geochemistry (Grew, E.S., editor). Reviews in Mineralogy and Geochemistry, 50. Mineralogical Society of America, Washington DC.CrossRefGoogle Scholar
Franz, G., Grundmann, G. and Ackermand, D. (1986) Rock forming beryl from a regional metamorphic terrain (Tauern Window, Austria): parageneses and crystal chemistry. Tschermaks Mineralogische und Petrographische Mitteilungen, 35, 167192.CrossRefGoogle Scholar
Gadas, P., Novák, M., Vašinová Galiová, M., Szuszkiewicz, A., Pieczka, A., Haifler, J. and Cempírek, J. (2020) Secondary beryl in cordierite/sekaninaite pseudomorphs from granitic pegmatites – a monitor of elevated content of beryllium in the precursor. The Canadian Mineralogist, 58, 785802.CrossRefGoogle Scholar
Ganguli, D. and Saha, P. (1967) A reconnaissance of the system BeO–Al2O3–SiO2–H2O. Transactions of the Indian Ceramic Society, 26, 102110.CrossRefGoogle Scholar
Gawęda, A., Müller, A., Stein, H., Kądziolko-Gaweł, M. and Mikulski, S. (2013) Age and origin of the tourmaline-rich hydraulic breccias in the Tatra Granite, Western Carpathians. Journal of Geosciences, 58, 133148.CrossRefGoogle Scholar
Gawęda, A., Burda, J., Klötzli, U., Golonka, J. and Szopa, K. (2016) Episodic construction of the Tatra granitoid intrusion (Central Western Carpathians, Poland/Slovakia): consequences for the geodynamics of Variscan collision and Rheic Ocean closure. International Journal of Earth Sciences, 105, 11531174.CrossRefGoogle Scholar
Gawęda, A., Szopa, K., Włodyka, R., Burda, J., Crowley, Q. and Sikorska, M. (2019) Continuous magma mixing and cumulate separation in the High Tatra Mountains open system granitoid intrusion, Western Carpathians (Poland/Slovakia): a textural and geochemical study. Acta Geologica Polonica, 4, 549570.Google Scholar
Giuseppetti, G., Tadini, C. and Mattioli, V. (1992) Bertrandite: Be4Si2O7(OH)2, from Val Vigezzo (NO) Italy: the X-ray structural refinement. Neues Jahrbuch für Mineralogie Monatshefte, 1992, 1319.Google Scholar
Godovikov, A.A. (1983) Mineralogy. Nedra Press, Moscow, 647 pp. [in Russian].Google Scholar
Hofmeister, A.M., Hoering, T.C. and Virgo, D. (1987) Vibrational spectroscopy of beryllium aluminosilicates: Heat capacity calculations from band assignments. Physics and Chemistry of Minerals, 14, 205224.CrossRefGoogle Scholar
Hsu, L.C. (1983) Some phase relationships in the system BeO–Al2O3–SiO2–H2O with comments on the effects of HF. Memoir of the Geological Society of China, 5, 3346.Google Scholar
Jobin-Bevans, S. and Černý, P. (1998) The beryllian cordierite + beryl + spessartine assemblage, and secondary beryl in altered cordierite, Greer Lake granitic pegmatites, southeastern Manitoba. The Canadian Mineralogist, 36, 447462.Google Scholar
Jonsson, E. and Langhof, J. (1997) Late-stage beryllium silicates from the Sels-Vitberget granitic pegmatite, Kramfors, central Sweden. Journal of the Geological Society of Sweden, 119, 249251.Google Scholar
Kohút, M. and Larionov, A.N. (2021) From subduction to collision: Genesis of the Variscan granitic rocks from the Tatric Superunit (Western Carpathians, Slovakia). Geologica Carpathica, 72, 96113.CrossRefGoogle Scholar
Kohút, M., Uher, P., Putiš, M., Ondrejka, M., Sergeev, S., Larionov, A. and Paderin, I. (2009) SHRIMP U-Th-Pb zircon dating of the granitoid massifs in the Malé Karpaty Mountains (Western Carpathians): Evidence of Meso-Hercynian successive S- to I-type granitic magmatism. Geologica Carpathica, 60, 345350.CrossRefGoogle Scholar
Krist, E., Korikovsky, S.P., Putiš, M., Janák, M. and Faryad, S.W. (1992) Geology and Petrology of Metamorphic Rocks of the Western Carpathian Crystalline Complexes. Comenius University Press, Bratislava, 324 pp.Google Scholar
Kurumathoor, R. and Franz, G. (2018) Etch pits on beryl as indicators of dissolution behaviour. European Journal of Mineralogy, 30, 107124.CrossRefGoogle Scholar
Lahti, S.I. and Saikkonen, R. (1985) Bityite 2M1 from Erajärvi compared with related Li-Be brittle micas. Geological Society of Finland, Bulletin, 57, 207215.CrossRefGoogle Scholar
London, D. (2008) Pegmatites. The Canadian Mineralogist Special Publication, 10. Mineralogical Association of Canada, Québec, 347 pp.Google Scholar
Majzlan, J., Chovan, M., Kiefer, S., Gerdes, A., Kohút, M., Siman, P., Konečný, P., Števko, M., Finger, F., Waitzinger, M., Biroň, A., Luptáková, J., Ackerman, L. and Hora, J.M. (2020) Hydrothermal mineralisation of the Tatric Superunit (Western Carpathians, Slovakia): II. Geochronology and timing of mineralisations in the Nízke Tatry Mts. Geologica Carpathica, 71, 113133.Google Scholar
Marcos-Pascual, C. and Moreiras, D.B. (1997) Characterization of alexandrite, emerald and phenakite from Franqueira (NW Spain). The Journal of Gemmology, 25, 340357.CrossRefGoogle Scholar
Markl, G. and Schumacher, J.C. (1997) Beryl stability in local hydrothermal and chemical environments in a mineralized granite. American Mineralogist, 82, 194202.CrossRefGoogle Scholar
Martin-Izard, A., Paniagua, A., Moreiras, D., Acevedo, R.D. and Marcos-Pascual, C. (1995) Metasomatism at a granitic pegmatite – dunite contact in Galicia; the Franqueira occurrence of chrysoberyl (alexandrite), emerald, and phenakite. The Canadian Mineralogist, 33, 775792.Google Scholar
Novák, M. and Filip, J. (2010) Unusual (Na,Mg)-enriched beryl and its breakdown products beryl II, bazzite, bavenite) from euxenite-type NYF pegmatite related to the orogenic ultrapotassic Třebíč pluton, Czech Republic. The Canadian Mineralogist, 48, 615628.CrossRefGoogle Scholar
Novák, M., Uher, P., Černý, P. and Siman, P. (2000) Compositional variations in ferrotapiolite + tantalite pairs from the beryl-columbite pegmatite at Moravany nad Váhom, Slovakia. Mineralogy and Petrology, 69, 295306.Google Scholar
Ozdín, D. (2010) Beryl and phenakite from granitic pegmatites of the Sitina tunnel in Bratislava (Slovak Republic). Bulletin Mineralogicko-Petrologického Oddělení Narodního Muzea (Praha), 18, 7884 [in Slovak, English abstract].Google Scholar
Palinkaš, S.S., Wegner, R., Cobić, A., Palinkaš, L.A., De Brito Barreto, S., Váczi, T. and Bermanec, V. (2014) The role of magmatic and hydrothermal processes in the evolution of Be-bearing pegmatites: Evidence from beryl and its breakdown products. American Mineralogist, 99, 424432.CrossRefGoogle Scholar
Parameshwaran, R.K. (2016) Dissolution Behaviour of Beryl. MSc thesis, Technische Universität Berlin, Germany.Google Scholar
Petrík, I., Kohút, M. and Broska, I. (2001) Granitic Plutonism of the Western Carpathians. Guidebook to Eurogranites 2001. Veda Press, Bratislava, 116 pp.Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) “PAP” φ(ρZ) procedure for improved quantitative microanalysis. Microbeam Analysis, 20, 104106.Google Scholar
Rao, C., Wang, R.C. and Hu, H. (2011) Paragenetic assemblages of beryllium silicates and phosphates from the Nanping No. 31 granitic pegmatite dyke, Fujian Province, Southeastern China. The Canadian Mineralogist, 49, 11751187.CrossRefGoogle Scholar
Schilling, J., Bingen, B., Skår, Ø., Wenzel, T. and Markl, G. (2015) Formation and evolution of the Høgtuva beryllium deposit, Norway. Contributions to Mineralogy and Petrology, 170, 121.CrossRefGoogle Scholar
Seifert, A. V., Žáček, V., Vrána, S., Pecina, V., Zachariáš, J. and Zwaan, J.C. (2004) Emerald mineralization in the Kafubu area, Zambia. Bulletin of Geosciences, 79, 140.Google Scholar
Sejkora, J., Ondruš, P., Fikar, M., Veselovský, F., Mach, Z. and Gabašová, A. (2006) New data on mineralogy of the Vysoký Kámen deposits near Krásno, Slavkovský les area, Czech Republic. Journal of Geosciences, 51, 4355.Google Scholar
Strand, T. (1953) Euclase from Iveland, occurring as an alteration product of beryl. Norsk Geologisk Tidsskrift, 31, 15.Google Scholar
Syromyatnikov, F.V., Makarova, A.P. and Kupriyanova, I.I. (1972) Experimental studies of stability of beryl and phenacite in aqueous solutions. International Geology Review, 14, 837839.CrossRefGoogle Scholar
Uher, P. (1991) Be-Nb-Ta granitic pegmatites – a new type of rare-element mineralization in the Western Carpathians. Geologica Carpathica, 42, 331339.Google Scholar
Uher, P. and Broska, I. (1995) Pegmatites in two suites of Variscan orogenic granitic rocks (Western Carpathians, Slovakia). Mineralogy and Petrology, 55, 2736.CrossRefGoogle Scholar
Uher, P. and Černý, P. (1998) Zircon in Hercynian granitic pegmatites of the Western Carpathians, Slovakia. Geologica Carpathica, 49, 261270.Google Scholar
Uher, P. and Chudík, P. (2014) Minerals and geochemistry of the Bratislava - Jezuitské lesy granitic pegmatite (Slovakia). Bulletin Mineralogicko-Petrologického Oddělení Narodního Muzea (Praha), 22, 281292 [in Slovak, English abstract].Google Scholar
Uher, P., Černý, P., Novák, M. and Siman, P. (1994) Niobium-tantalum minerals from granitic pegmatites in the Malé Karpaty, Považský Inovec and Žiar Mountains, Western Carpathians, Slovakia. Mineralia Slovaca, 26, 157164.Google Scholar
Uher, P., Černý, P., Chapman, R., Határ, J. and Miko, O. (1998a) Evolution of Nb,Ta-oxide minerals in the Prašivá granitic pegmatites, Slovakia; I, Primary Fe,Ti-rich assemblage. The Canadian Mineralogist, 36, 525534.Google Scholar
Uher, P., Černý, P., Chapman, R., Határ, J. and Miko, O. (1998b) Evolution of Nb,Ta-oxide minerals in the Prašivá granitic pegmatites, Slovakia. II. External hydrothermal Pb,Sb overprint. The Canadian Mineralogist, 36, 535545.Google Scholar
Uher, P., Žitňan, P. and Ozdín, D. (2007) Pegmatitic Nb-Ta oxide minerals in alluvial placers from Limbach, Bratislava Massif, Western Carpathians, Slovakia: Compositional variations and evolutionary trend. Journal of Geosciences, 52, 133141.Google Scholar
Uher, P., Chudík, P., Bačík, P., Vaculovič, T. and Galiová, M. (2010) Beryl composition and evolution trends: An example from granitic pegmatites of the beryl-columbite subtype, Western Carpathians, Slovakia. Journal of Geosciences, 55, 6980.Google Scholar
Uher, P., Kohút, M., Ondrejka, M., Konečný, P. and Siman, P. (2014) Monazite-(Ce) in Hercynian granites and pegmatites of the Bratislava Massif, Western Carpathians: Compositional variations and Th-U-Pb electron-microprobe dating. Acta Geologica Slovaca, 6, 215231.Google Scholar
Vernon, R.H. and Williams, K.L. (1960) Bertrandite from Mica Creek, Queensland. American Mineralogist, 45, 13001303.Google Scholar
Wang, X. and Li, J. (2020) In situ observations of the transition between beryl and phenakite in aqueous solutions using a hydrothermal diamond-anvil cell. The Canadian Mineralogist 58, 803814.CrossRefGoogle Scholar
Wang, R., Cheng Che, X., Dong Zhang, W., Lan Zhang, A. and Cheng Zhang, H. (2009) Geochemical evolution and late re-equilibration of Na–Cs-rich beryl from the Koktokay #3 pegmatite (Altai, NW China). European Journal of Mineralogy, 21, 795809.CrossRefGoogle Scholar
Wise, M.A., Müller, A. and Simmons, W.B. (2022) A proposed new mineralogical classification system for granitic pegmatites. The Canadian Mineralogist, 60, 229248.CrossRefGoogle Scholar
Wood, S.A. (1992) Theoretical prediction of speciation and solubility of beryllium in hydrothermal solution to 300 °C at saturated vapor pressure: Application to bertrandite/phenakite deposits. Ore Geology Reviews, 7, 249278CrossRefGoogle Scholar
Zachař, A., Novák, M. and Škoda, R. (2020) Beryllium minerals as monitors of geochemical evolution from magmatic to hydrothermal stage; examples from NYF pegmatites of the Třebíč Pluton, Czech Republic. Journal of Geosciences, 65, 153172.CrossRefGoogle Scholar