Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T17:59:18.953Z Has data issue: false hasContentIssue false

Phase equilibria and mixed parageneses of metabasites in lowgrade metamorphism

Published online by Cambridge University Press:  05 July 2018

J. G. Liou
Affiliation:
Department of Geology, Stanford University, Stanford, California 94305, USA
S. Maruyama
Affiliation:
Department of Geology, Stanford University, Stanford, California 94305, USA
M. Cho
Affiliation:
Department of Geology, Stanford University, Stanford, California 94305, USA

Abstract

The system Na2O-CaO-MgO Al2O3-SiO2-H2O is proposed to model phase equilibria and mineral parageneses for low-temperature metamorphism of basaltic rocks. Univariant reactions marking the transitions between various sub-greenschist facies are identified and some have been experimentally determined. The introduction of Fe2O3 into the model system at fixed FeO/MgO ratio creates continuous reactions for facies boundaries and discontinuous reactions for invariant points of the model system. Both qualitative and quantitative effects on P-T displacement and phase compositions are discussed. The XFe3+ isopleths for epidote were plotted to exemplify the transition from the zeolite through prehnite-pumpellyite to prehnite-actinolite facies. T-XFe3+ relations were established for continuous and discontinuous reactions relating such facies transitions. Because of the common occurrence of two or three Ca-Al hydrosilicates in low-grade metabasites, an isobaric Al-Ca-Fe3+ projection from chlorite may be used to illustrate mineral assemblages and compositions of the coexisting Ca-Al silicates in the presence of quartz, albite, and chlorite. Reported occurrences in several classic burial metamorphic terrains and ocean-floor metabasites in ophiolites are described. Only the composition of a mineral from a buffered assemblage can constrain the intensive properties for metamorphism; previously reported compositional trends for pumpellyite and epidote with increasing metamorphic grade are oversimplified.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Apted, M., and Liou, J. G. (1983) Am. J. Sci. 283-A, 328-54.Google Scholar
Bird, D. K., Schiffman, P., Elders, W. A., and Williams, A. E. (1984) Econ. Geol. 79, 671-95.CrossRefGoogle Scholar
Bishop, D. G. (1972) Geol. Soc. Am. Bull. 83, 3177-98.CrossRefGoogle Scholar
Bowen, N. L. (1928) The evolution of the Igneous Rocks. Princeton Press, Princeton, New Jersey, 332 pp.Google Scholar
Carman, J. H., and Gilbert, M. C. (1983) Am. J. Sci. 283-A, 414-37.Google Scholar
Cho, M., Liou, J. G., and Maruyama, S. (in press) J. Petrol. Google Scholar
Coombs, D. S. (1960) 21st Int. Geol. Congr. Copenhagen, 13, 339-51.Google Scholar
Coombs, D. S., Ellis, A. J., Fyfe, W. S., and Taylor, A. M. (1959) Geochim. Cosmochim. Acta, 17, 53107.CrossRefGoogle Scholar
Coombs, D. S., Kawachi, Y., Houghton, B. F., Hyden, G., Pringle, I. J., and Williams, J. G. (1977) Contrib. Mineral. Petrol. 63, 229-46.CrossRefGoogle Scholar
Coombs, D. S., Nakamura, Y., and Vuagnat, M. (1976) J. Petrol. 17, 440-71.CrossRefGoogle Scholar
Ernst, W. G. (1977) Rend. Soc. Ital. Mineral. Petrol. 33, 191-220.Google Scholar
Ernst, W. G. (1983) Geol. Soc. China, Mem. 5, 229-68.Google Scholar
Ernst, W. G. and Liou, J. G. (in press) Ofioliti. Google Scholar
Evarts, R. C., and Schiffman, P. (1983) Am. J. Sci. 283, 289-340.CrossRefGoogle Scholar
Houghton, B. F. (1982) N.Z. J. Geol. Geophys. 25, 1-19.CrossRefGoogle Scholar
Kawachi, Y. (1975) Ibid. 18, 401-41.Google Scholar
Kuniyoshi, S. and Liou, J. G. (1976a) Am. J. Sci. 276, 1096-119.CrossRefGoogle Scholar
Kuniyoshi, S. and Liou, J. G. (1976b) J. Petrol. 17, 73-9.CrossRefGoogle Scholar
Levi, B., Aguirre, L., and Nystrom, J. O. (1982) Contrib. Mineral. Petrol. 80, 49-58.CrossRefGoogle Scholar
Liou, J. G. (1971a) J. Petrol. 12, 379411.CrossRefGoogle Scholar
Liou, J. G. (1971b) Am. Mineral. 56, 507-31.Google Scholar
Liou, J. G. (1979) Ibid. 64, 1-14.Google Scholar
Liou, J. G. (1983) Geol. Soc. China Mere. 5, 47-66.Google Scholar
Liou, J. G. and Ernst, W. G. (1979) Contrib. Mineral. Petrol. 68, 335-48.CrossRefGoogle Scholar
Liou, J. G., Kim, H. S., and Maruyama, S. (1983) J. Petrol. 24, 321-42.CrossRefGoogle Scholar
Liou, J. G., Seki, Y., Guillemette, R., and Sakai, H. (1985) Chem. Geol. 49 (in press).CrossRefGoogle Scholar
Maresch, W. V. (1977) Tectonophysics, 43, 109-25.CrossRefGoogle Scholar
Marnyama, S., Liou, J. G., and Cho, M. (in press).Google Scholar
Suzuki, K., and Liou, J. G. (1983) J. Petrol. 24, 583-604.Google Scholar
Nakajima, T., Banno, S., and Suzuki, T. (1977) J. Petrol. 18, 263-84.CrossRefGoogle Scholar
Nitsch, K. H. (1971) Contrib. Mineral. Petrol. 30, 240-60.CrossRefGoogle Scholar
Presnall, D. C., Dixon, J. R., O'Donnell, T. H., and Dixon, S. A. (1979) J. Petrol. 20, 335.CrossRefGoogle Scholar
Schiffman, P. (1978) Unpubl. Ph.D. thesis, Stanford Uni versity.Google Scholar
Schiffman, P., Elders, W. A., Williams, A. E., McDowell, S. D., and Bird, D. K. (1984) Geology, 12, 12-15.2.0.CO;2>CrossRefGoogle Scholar
Schiffman, P. and Liou, J. G. (1980) J. Petrol. 21, 441-74.CrossRefGoogle Scholar
Seki, Y. (1961) J. Petrol. 2, 407-23.CrossRefGoogle Scholar
Schiffman, P. and Liou, J. G. (1981) Geol. Soc. China, Mere. No. 4, 207-28.Google Scholar
Schiffman, P., Oki, Y., Matsuda, T., Mikami, K., and Okumura, K. (1969) J. Japan Ass. Mineral. 61, 175.Google Scholar
Smith, R. E., Perdrix, J. L., and Parks, T. C. (1982) J. Petrol. 23, 75102.CrossRefGoogle Scholar
Thompson, A. B. (1976) Am. J. Sci. 276, 401-24.CrossRefGoogle Scholar
Zen, E. -A. (1974) J. Petrol. 15, 197242.CrossRefGoogle Scholar