Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-14T07:25:33.242Z Has data issue: false hasContentIssue false

Palenzonaite, berzeliite, and manganberzeliite: (As5+, V5+, Si4+)O4 tetrahedra in garnet structures

Published online by Cambridge University Press:  05 July 2018

M. Nagashima*
Affiliation:
Graduate School of Science and Engineering, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8512, Japan
T. Armbruster
Affiliation:
Mineralogical Crystallography, Institute of Geological Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
*

Abstract

Schäferite, NaCa2Mg2(V5+O4)3; palenzonaite, NaCa2Mn22+(V5+O4)3; berzeliite, NaCa2Mg2(As5+O4)3; and manganberzeliite, NaCa2Mn2+2(As5+O4)3, are cubic minerals with garnet structures (space group Iad) in which tetrahedrally coordinated V5+ and/or As5+ at the Z site are charge balanced by disordered Na+ and Ca2+ at the X site, and divalent Mg2+ and Mn2+ cations at the octahedrally coordinated Y site. The crystal chemistry of palenzonaite (from the Molinello and Gambatesa mines, Italy, and the Fianel mine, Switzerland), berzeliite (from Långban, Sweden, and Montaldo, Italy), and manganberzeliite (from Varenche, Italy, and the Gozaisho mine, Japan) were studied by electron microprobe analysis and single-crystal X-ray diffraction methods. Structure refinements converged to R1 values of 1.36–2.42%. The tetrahedral site in these garnet structures is mainly occupied by pentavalent As5+ or V5+ (only up to about 20% randomly distributed Si4+ is present). Charge balance is maintained by variations in the Ca/Na ratio at the X site. Heterovalent substitution (Na+ ↔ Ca2+) at the distorted square antiprism X site in vanadate- and arsenate-bearing garnets allows full occupancy of the octahedral Y site by divalent cations (primarily Mg2+ and Mn2+). There is a positive correlation between the <ZO> and <YO> bond lengths and the mean ionic radii of the substituent elements, but there is no correlation between the <XO> bond length and the variable Na/Ca site occupancy. The ionic radii of octahedrally coordinated Mg2+ and Mn2+ are such that the shared octahedral–dodecahedral edges are similar in length to the unshared octahedral edges, which is a measure of lattice distortion in garnet structures.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araki, T. and Moore, P.B. (1981) Dixenite, Cu1+Mn2+ 14Fe3+(OH)6(As3+O3)5(Si4+O4)2(As5+O4): metallic [As3+ 4 Cu1+] clusters in an oxide matrix. American Mineralogist, 66, 12631273.Google Scholar
Barresi, A.A., Kolitsch, U., Ciriotti, M.E., Ambrino, P., Bracco, R. and Bonacina, E. (2005) La miniera di manganese di Varenche (Aosta, Italia nord-occidentale): ardennite, arseniopleite, manganberzeliite, pirofanite, sarkinite, sursassite, thortveitite, nuovo As-analogo della metavariscite e altre specie minerali. Micro, 2/2005, 81122.Google Scholar
Basso, R. (1987) The crystal structure of palenzonaite, a new vanadate garnet from Val Graveglia (Northern Apennines, Italy). Neues Jahrbuch für Mineralogie Monatshefte, 1987, 136144.Google Scholar
Bayer, G. (1965) Vanadates A3B2V3O12 with garnet structure. Journal of the American Ceramic Society, 48, 600.CrossRefGoogle Scholar
Blix, R. and Wickman, F.E. (1959) A contribution to the knowledge of the mineral berzeliite. Arkiv for Kemi Mineralogi Och Geologi, 2, 417424.Google Scholar
Brugger, J. (1995) Mineralogy of the iron-manganese deposit of Fianel, Ferrera valley, Graubünden. Schweizerische Mineralogische Petrographische Mitteilungen, 75, 296297.Google Scholar
Brugger, J. and Berlepsch P. (1996) Description and crystal structure of fianelite, Mn2V(V,As)O7·2H2O, a new mineral from Fianel, Val Ferrera, Graubünden, Switzerland. American Mineralogist, 81, 12701276.CrossRefGoogle Scholar
Bruker, (1999) SMART and SAINT-Plus. Versions 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Brunet, F., Bonneau, V. and Irifune, T. (2006) Complete solid-solution between Na3Al2(PO4)3 and Mg3Al2(SiO4)3 garnet at high pressure. American Mineralogist, 91, 211215.CrossRefGoogle Scholar
Del Tánago, J.G., La Iglesia, Á ., Rius, J. and Santín, S.F. (2003) Calderonite, a new lead-iron vanadate of the brackebuschite group. American Mineralogist, 88, 17031708.CrossRefGoogle Scholar
Donnay, G. and Allmann, R. (1968) Si3O10 groups in the crystal structure of a rd ennite. Act a Crystallographica, B24, 845855.CrossRefGoogle Scholar
Dukhovskaya, E.L. and Mill, B.V. (1974) Refinement of the crystal structure of vanadium garnet Na0 . 9Ca2 . 0 5Co2V3O1 2. S ov i e t Phy s i c s Crystallography, 19, 4749.Google Scholar
Frondel, C. and Ito, J. (1963) Manganberzeliite from Franklin, New Jersey. American Mineralogist, 48, 663664.Google Scholar
Grice, J.D. and Dunn, P.J. (1994) Johninnesite: crystalstructure determination and its relationship to other arsenosilicates. American Mineralogist, 79, 991995.Google Scholar
Hawthorne, F.C. (1976) Refinement of the crystal structure of berzeliite. Acta Crystallographica, B32, 15811583.CrossRefGoogle Scholar
Hawthorne, F.C. (1981) Some systematics of the garnet structure. Journal of Solid State Chemistry, 37, 157164.CrossRefGoogle Scholar
Holtstam, D. and Langhof, J. (editors) (1999) Långban: the Mines, their Minerals, Geology and Explorers. Swedish Museum of Natural History, Raset Förlag, Stockholm, 215 pp.Google Scholar
Iishi, K. and Ikuta, Y. (2006) Isomorphous substitutions in vanadate garnets. Neues Jahrbuch fü r Mineralogie, Abhandlungen, 182, 157163.CrossRefGoogle Scholar
Ito, J . (1968) Synthesis of the berzeliite (Ca2NaMg2As3O12)-manganese berzeliite (Ca2NaMn2As3O12) series (arsenate garnet). American Mineralogist, 53, 316319.Google Scholar
Krause, W., Blab, G. and Effenberger, H. (1999) Schäferite, a new vanadium garnet from the Bellberg volcano, Eifel, Germany. Neues Jahrbuch für Mineralogie, Monatshefte, 1999, 123134.Google Scholar
Kolitsch, U. (2008) The crystal structure of a new Ca- Na-Mn3+-arsenate from a small metamorphic Mn deposit in Italy. Abstract of the 18th Annual V. M. Goldschmidt Conference, Vancouver, Canada, Geochimica et Cosmochimica Acta, 72, Special Supplement 12S, A487.Google Scholar
Matsubara, S. (1975) Manganberzeliite from the Gozaisho mine, Fukushima Prefecture, Japan. Journal of the Mineralogical Society of Japan, 12, 238–52. [in Japanese].CrossRefGoogle Scholar
Momma, K. and Izumi, F. (2008) VESTA: a threedimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 41, 653658.CrossRefGoogle Scholar
Nagashima, M. and Armbruster, T. (2010) Ardennite, tiragalloite and medaite: structural control of (As5+, V5+, Si4+)O4 tetrahedra in silicates. Mineralogical Magazine, 74, 5571.CrossRefGoogle Scholar
Nakatsuka, A., Ikuta, Y., Yoshiasa, A. and Iishi, K. (2003) Vanadate garnet, Ca2NaMg2V3O12. Acta Crystallographica, C59, i133i135.Google Scholar
Nakatsuka, A., Ikuta, Y., Yoshiasa, A. and Iishi, K. (2004a) The crystal structure of synthetic palenzonaite Ca2NaMn2V3O12. Pp. 631634 in Applied Mineralogy: Developments in Science and Technology (M. Pecchio, F.R.D. Andrade, L.Z. D’Agostino, H. Kahn, L.M. Sant’Agostino and M.M.M.L. Tassinari, editors). Proceedings of the International Congress on Applied Mineralogy, 2. ICAM-BR, Sa˜n Paulo, Brazil.Google Scholar
Nakatsuka, A., Ikuta, Y., Yoshiasa, A., Iishi, K. (2004b) Single crystal X-ray diffraction study of the vanadate garnet Ca2NaZn2V3O12. Materials Research Bulletin, 39, 949956.Google Scholar
Novak, G.A. and Gibbs, G.V. (1971) The crystal chemistry of the silicate garnets. American Mineralogist, 56, 791825.Google Scholar
Piccoli, G.C., Kolitsch, U., Blass, G. and Ciriotti, M.E. (2007) Berzeliite di Montaldo di Mondov: prima segnalazione italiana. Micro, 1/2007, 4954.Google Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172, 567570.CrossRefGoogle ScholarPubMed
Roth, P. and Meisser, N. (2011) I minerali dell’Alpe Tanatz. Rivista Mineralogica Italiana, 35, 9098.Google Scholar
Schwarz, H. and Schmidt, L. (1972) Neue Verbindungen mit Granatstruktur. IV. Arsenate des Typs {Na3}[M2 III](As3)O12. Zeitschrift für Anorganische und Allgemeine Chemie, 387, 3142.CrossRefGoogle Scholar
Schwarz, H. and Schmidt, L. (1975) Neue Verbindungen mit Granatstruktur. VI. Vanadate. Zeitschrift für Anorganische und Allgemeine Chemie, 413, 150164.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Sheldrick, G.M. (1996) SADABS. University of Gö ttingen, Göttingen, Germany.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Thilo, E. (1941) Ü ber die Isotypie zwichen Phosphaten derallgemeinen Zusammensetzung (Me1)3(Me2)2[PO4]3 und den Silikaten der Granatgruppe. Naturwissenschaften, 29, 239.Google Scholar
Supplementary material: File

Nagashima and Armbruster supplementary material

Berzeliite Langban.cif

Download Nagashima and Armbruster supplementary material(File)
File 16.2 KB
Supplementary material: File

Nagashima and Armbruster supplementary material

Mn Berzeliite Gozaisho.cif

Download Nagashima and Armbruster supplementary material(File)
File 15.9 KB
Supplementary material: File

Nagashima and Armbruster supplementary material

Palenzonaite Fianel.cif

Download Nagashima and Armbruster supplementary material(File)
File 15.5 KB
Supplementary material: File

Nagashima and Armbruster supplementary material

Palenzonaite Molinello.cif

Download Nagashima and Armbruster supplementary material(File)
File 15.5 KB
Supplementary material: File

Nagashima and Armbruster supplementary material

Berzeliite Montaldo.cif

Download Nagashima and Armbruster supplementary material(File)
File 16.3 KB
Supplementary material: File

Nagashima and Armbruster supplementary material

Mn Berzellite Varenche.cif

Download Nagashima and Armbruster supplementary material(File)
File 16.3 KB
Supplementary material: File

Nagashima and Armbruster supplementary material

Palenzonaite Gambatesa.cif

Download Nagashima and Armbruster supplementary material(File)
File 15.5 KB