Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T22:38:10.122Z Has data issue: false hasContentIssue false

Oxygen isotope sector zoning in natural hydrothermal quartz

Published online by Cambridge University Press:  05 July 2018

A.-L. Jourdan*
Affiliation:
Institut de Mineralogie et Geochimie, Universite de Lausanne, L’Anthropole, 1015 Lausanne, Switzerland
T. W. Vennemann
Affiliation:
Institut de Mineralogie et Geochimie, Universite de Lausanne, L’Anthropole, 1015 Lausanne, Switzerland
J. Mullis
Affiliation:
Mineralogisch- Petrographisches Institut, Universität Basel, Bernoullistrasse 30, 4056 Basel, Switzerlande
K. Ramseyer
Affiliation:
Institut für Geologie, Universität Bern, Baltzerstrasse 1-3, 3012 Bern, Switzerland
*

Abstract

Oxygen isotope measurements using SIMS and laser-fluorination methods confirm the presence of concentric and sector zoning in low-temperature (200°C to <400°C) hydrothermal quartz from Alpine veins. While concentric zoning is most readily explained by changes in the chemical composition of the fluid or temperature of crystallization, the reasons for sector zoning are more difficult to explain. Relative enrichment in 18O for crystallographically different sectors of quartz corresponds to m >r >z. Sector zoning is, however, largely limited to the exterior zones of crystals and/or to crystals with large Al (>1000 ppm) and trace element contents, probably formed at temperatures <250°C. Differences in δ18O between the prismatic (m) relative to the rhombohedral (r and z) growth sectors of up to 2% can be explained by a combination of a face-related crystallographic and/or a growth rate control. In contrast, isotopic sector zoning of up to about 1.5% amongst the different rhombohedral faces increases in parallel with the trace element content and is likely to represent disequilibrium growth. This is indicated by non-systematic, up to 2%, differences within single growth zones and the irregular, larger or smaller, δ18O values (of several permil) of the exterior compared to the inner zones of the same crystals. Disequilibrium growth may be related to the large trace element content incorporated into the growing quartz at lower temperatures (<250°C) and/or be related to fluid-vapour separation, allowing crystal growth from both a vapour as well as a liquid phase.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: now at Department of Earth Sciences, Durham University, South Road, Durham DH1 3LE, UK

References

Bourcier, W.L., Kanuss, K.G. and Jackson, K.J. (1993) Aluminium hydrolysis constants to 250°C from boehmite solubility measurements. Geochimica et Cosmochimica Acta, 57, 747—762.10.1016/0016-7037(93)90166-TCrossRefGoogle Scholar
Castet, S., Dandurand, J.-L., Schott, J. and Gout, R. (1993) Boehmite solubility and aqueous aluminium speciation in hydrothermal solutions(90—350°C): Experimental study and modelling. Geochimica et Cosmochimica Acta, 57, 4869—4884.CrossRefGoogle Scholar
Chacko, T., Cole, D.R. and Horita, J. (2001) Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems. Pp 1—82 in: Stable Isotope Geochemistry (J.W. Valley and D.R. Cole, editors). Reviews in Mineralogy and Geochemistry, 43, Mineralogical Society of America, Chantilly, Virginia, USA.Google Scholar
Chamberlain, C.P., Zeitler, P.K., Barnett, D.E., Winslow, D., Poulson, S.R., Leahy, T. and Hammer, J.E. (1995) Active hydrothermal systems during the recent uplift of Nanga Parbat, Pakistan Himalaya. Journal of Geophysical Research, 100(B1), 439—453.CrossRefGoogle Scholar
Chiba, H., Chacko, T., Clayton, R.N. and Goldschmidt, J.R. (1989) Oxygen fractionation involving diopside, forsterite, magnetite and calcite, application to geothermometry. Geochimica et Cosmochimica Acta, 53, 2985—2995.10.1016/0016-7037(89)90174-9CrossRefGoogle Scholar
Clayton, R.N., O’Neil, J.R. and Mayeda, T.K. (1972) Oxygen isotope exchange between quartz and water. Journal of Geophysical Research, 77, 3057—3067.CrossRefGoogle Scholar
Clayton, R.N., Goldschmidt, J.R. and Mayeda, T.K. (1989) Oxygen isotope fractionation in quartz, albite, anorthite and calcite. Geochimica et Cosmochimica Acta, 53, 725—733.CrossRefGoogle Scholar
Cole, D.R. (1994) Evidence for oxygen isotope disequilibrium in selected geothermal and hydrothermal ore deposit systems. Chemical Geology, 111, 283—296.CrossRefGoogle Scholar
Coplen, T.B., Kendall, C. and Hopple, J. (1983) Comparison of stable isotope reference samples. Nature, 302, 236—238.CrossRefGoogle Scholar
Dickson, J.A.D. (1991) Disequilibrium carbon and oxygen isotope variations in natural calcite. Nature, 353, 842844.10.1038/353842a0CrossRefGoogle Scholar
Dickson, J.A.D. (1996) Isotopic homogeneity among nonequivalent sectors of calcite, comment and reply. Geology, 24, 9596.2.3.CO;2>CrossRefGoogle Scholar
Dickson, J.A.D. (1997) Synchronous intracrystalline SC13 and SO18 differences in natural calcite. Mineralogical Magazine, 61, 243248.CrossRefGoogle Scholar
Dowty, E. (1976) Crystal structure and crystal growth, II: sector zoning. American Mineralogist, 61, 460469.Google Scholar
Eiler, J.M., Graham, C.M. and Valley, J.W. (1997) SIMS analysis of oxygen isotopes: Matrix effects in complex minerals and glasses. Chemical Geology, 138, 221244.CrossRefGoogle Scholar
Fiebig, J., Wiechert, U., Rumble, D. III, and Hoefs, J. (1999) High precision in situ oxygen isotope analysis of quartz using an ArF Laser. Geochimica et Cosmochimica Acta, 63, 687702.CrossRefGoogle Scholar
Foustoukos, D.I. and Seyfried, W.E. Jr (2007) Trace element partitioning between vapour, brine and halite under extreme phase separation conditions. Geochimica et Cosmochimica Acta, 71, 20562071.CrossRefGoogle Scholar
Jourdan, A.-L. (2008) Elemental and isotopic zoning in natural Alpine quartz. PhD thesis, University of Lausanne, Switzerland, 116 pp.Google Scholar
Jourdan, A.-L., Vennemann, T.W., Mullis, J., Ramseyer, K. and Spiers, C.J. (2009) Evidence of growth and sector zoning in hydrothermal quartz from Alpine veins. European Journal of Mineralogy, 21, 219231.CrossRefGoogle Scholar
Kasemann, S., Meisner, A., Rocholl, A., Vennemann, T., Schmitt, A. and Wiedenbeck, M. (2001) Boron and oxygen isotope composition of certified reference materials MIST SRM 610/612, and reference materials JB-2G and JR-2G. Geostandards Newsletter, 25, 405416.10.1111/j.1751-908X.2001.tb00615.xCrossRefGoogle Scholar
Kawabe, I. (1978) Calculation of oxygen isotope fractionation in quartz-water system with special reference to the low temperature fractionation. Geochimica et Cosmochimica Acta, 42, 613621.CrossRefGoogle Scholar
Kieffer, S.W. (1982) Thermodynamics and lattice vibration of minerals: 5. application to phase equilibria, isotopic fractionation, and high pressure thermodynamic properties. Reviews of Geophysics and Space Physics, 20, 827849.CrossRefGoogle Scholar
Klein, R.T. and Lohmann, K.C. (1995) Isotopic homogeneity among non-equivalent sectors of calcite. Geology, 23, 633636.2.3.CO;2>CrossRefGoogle Scholar
Klein, R.T. and Lohmann, K.C. (1996) Isotopic homogeneity among non equivalent sectors of calcite: a reply. Geology, 23, 9596.Google Scholar
Klemm, A., Banerjee, A. and Hoernes, S. (1990) A new intracrystalline isotope effect, 18O under the faces of amethyst. Zeitschrift fur Naturforschung, 45a, 1374-1376.CrossRefGoogle Scholar
Klemm, A., Banerjee, A. and Hoernes, S. (1991) Fractionation of oxygen isotopes at the faces of smoky quartz. Zeitschrift fur Naturforschung, 46a, 1133-1134.CrossRefGoogle Scholar
Larkin, J.J., Armigton, A.F., O’Connor, J.J., Lipson, H.G. and Horrigan, J.A. (1982) Growth of quartz with high aluminium concentration. Journal of Crystal Growth, 60, 136140.CrossRefGoogle Scholar
Lucchini, R. (2002) Etude tectonique et g^ochimique des fissures post- metamorphiques des Alpes Centrales. PhD thesis, Institut de Min^ralogie et Geochimie, University of Lausanne, Switzerland, 142 pp.Google Scholar
Matsuhisa, Y., Goldschmidt, J.R. and Clayton, R.N. (1979) Oxygen isotopic fractionation in system quartz-albite-anorthite-water. Geochimica et Cosmochimica Acta, 43, 11311140.10.1016/0016-7037(79)90099-1CrossRefGoogle Scholar
Meheut, M., Lazzeri, M., Balan, E. and Mauri, F. (2009) Structural control over equilibrium silicon and oxygen isotopic fractionation: A first-principles density-functional theory study. Chemical Geology, 258, 2837.CrossRefGoogle Scholar
Mullis, J. (1995) Genesis of Alpine Fissure minerals. Investigation on Alpine minerals, Scientific and Technical Information, XI(2), 54-64.Google Scholar
Mullis, J. (1996) P-T-t path of quartz formation in extensional veins of the Central Alps. Schweizerische Miner a l o g is ch e und Petrographische Mitteilungen, 76, 159164.Google Scholar
Mullis, J., Dubessy, J., Poty, B. and O’Neil, J. (1994) Fluid regimes during late stages of a continental collision, Physical, chemical, and stable isotope measurement through the Central Alps, Switzerland. Geochimica et Cosmochimica Acta, 58, 22392267.CrossRefGoogle Scholar
Müller, A., Wiedenbeck, M., Van Den Kerkhof, A., Kronz, A. and Simon, K. (2003) Trace elements in quartz: a combined electron microprobe, secondary ion mass spectrometry, laser-ablation ICP-MS, and cathodoluminescence study. European Journal of Mineralogy, 15, 747763.CrossRefGoogle Scholar
Onasch, C.M. and Vennemann, T.W. (1995) Disequilibrium partitioning of oxygen isotopes associated with sector zoning in quartz. Geology, 23, 11031106.2.3.CO;2>CrossRefGoogle Scholar
O’Neil, J.R. and Taylor, H.P. Jr (1967) Oxygen isotope and cation exchange chemistry of feldspath. Journal of Geophysical Research, 74, 6012- 6022.Google Scholar
O’Neil, J.R., Vennemann, T.W. and McKenzie, W.F. (2003). Effects of speciation on equilibrium fractionations and rates of oxygen isotope exchange between (PO4)aq and H2O. Geochimica et Cosmochimica Acta, 67, 31353144.CrossRefGoogle Scholar
Paquette, J. and Reeder, R.J. (1990) New type of compositional zoning in calcite, insights of crystal- growth mechanisms. Geology, 18, 12441247.10.1130/0091-7613(1990)018<1244:NTOCZI>2.3.CO;22.3.CO;2>CrossRefGoogle Scholar
Paquette, J. and Reeder, R.J. (1995) Relationship between structure, growth mechanism, and trace element incorporation in calcite. Geochimica et Cosmochimica Acta, 59, 735—749.CrossRefGoogle Scholar
Peck, W.H., Valley, J.W., Wilde, S.A. and Graham, C.M. (2001) Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for high S18O continental crust and oceans in the Early Archean. Geochimica et Cosmochimica Acta, 65, 4215—4229.CrossRefGoogle Scholar
Poty, B.P. (1969) La croissance des cristaux de quartz dans les filons sur l’exemple du filon de La Gardette (Bourg d’Oisans) et des filons du massif du Mont Blanc. Sciences de la Terre, Memoire 17. Google Scholar
Reeder, R.J. and Grams, J.C. (1987) Sector zoning in calcite cement crystals, Implications for trace elements distributions in carbonates. Geochimica et Cosmochimica Acta, 51, 187—194.CrossRefGoogle Scholar
Reeder, R.J. and Paquette, J. (1989) Sector zoning in natural and synthetic calcites. Sedimentary Geology, 65, 239—247.10.1016/0037-0738(89)90026-2CrossRefGoogle Scholar
Reeder, R.J. and Prosky, J.L. (1986) Compositional sector zoning in dolomite. Journal of Sedimentary Petrology, 56, 237—247.Google Scholar
Reeder, R.J., Valley, J.W., Graham, C.M. and Eiler, J.M. (1997) Ion microprobe study of oxygen isotopic composition of structurally nonequivalent growth surfaces on synthetic calcite. Geochimica et Cosmochimica Acta, 61, 5057—5063.CrossRefGoogle Scholar
Rykart, R. (1989) Quarz Monographie - Die Eigenheiten von Bergkristall, Rauchquarz, Amethyst, Chalcedon, Achat, Opal und anderen Varietaten. Ott Verlag, Thun, Switzerland, 413 pp.Google Scholar
Sharp, Z.D. (1990) A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides. Geochimica et Cosmochimica Acta, 54, 13531357.CrossRefGoogle Scholar
Sharp, Z.D. (1992) In situ laser microprobe techniques for stable isotope analysis. Chemical Geology, 101, 319.Google Scholar
Sharp, Z.D. and Kirschner, D. (1994) Quartz-calcite oxygen isotope thermometry. Geochimica et Cosmochimica Acta, 58, 4491—4501.CrossRefGoogle Scholar
Sharp, Z.D., Masson, H. and Lucchini, R. (2005) Stable isotope geochemistry and formation mechanisms of quartz veins; extreme paleoaltitudes of the Central Alps in the Neogene. American Journal of Science, 305, 187—219.CrossRefGoogle Scholar
Taylor, H.P. (1974) The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Economic Geology, 69, 843—883.CrossRefGoogle Scholar
Taylor, H.P. and Epstein, S. (1962) Relationship between 18O/16O ratios in coexisting minerals of igneous and metamorphic rocks. Part I: Principles and experimental results. Geological Society of America Bulletin, 73 , 461—480.CrossRefGoogle Scholar
Valley, J.W. and Graham, C.M. (1993) Cryptic grain- scale heterogeneity of oxygen isotope ratios in metamorphic magnetite. Science, 259, 1729—1733.CrossRefGoogle ScholarPubMed
Valley, J.W. and Graham, C.M. (1996) Ion microprobe analysis of oxygen ratios in quartz from Skye granite: healed micro-cracks, fluid flow, and hydrothermal exchange. Contributions to Mineralogy and Petrology, 124, 225—234.CrossRefGoogle Scholar
Valley, J.W., Graham, C.M., Harte, B., Eiler, J.M. and Kinney, P.D. (1998) Ion microprobe analysis of oxygen, carbon and hydrogen isotope ratios. Pp. 73—98 in: Application of Microanalytical Techniques to Understanding Mineralizing Processes (M.A. McKibben and W.C. Shanks, editors). S.E.G. Reviews in Economic Geology, 7.CrossRefGoogle Scholar
Watson, E.B. (2004) A conceptual model for near surface kinetic controls on trace-element and stable isotope composition in abiogenic calcite. Geochimica et Cosmochimica Acta, 68, 1473—1488.CrossRefGoogle Scholar
Watson, E.B. and Liang, Y. (1995) A simple model for sector zoning in slowly grown crystals: Implications for growth rate and lattice diffusion, with emphasis on accessory minerals in crustal rocks. American Mineralogist, 80, 1179—1187.CrossRefGoogle Scholar
Young, E.D., Coutts, D.W. and Kapitan, D. (1998) UV- Laser ablation and irm-GCMS microanalysis of 18O/16O and 17O/16O with application to a calcium- aluminium-rich inclusion from the Allende meteorite. Geochimica et Cosmochimica Acta, 62, 3161—3168.CrossRefGoogle Scholar
Yoshimura, J. and Kohra, K. (1976) Studies on growth defects in synthetic quartz by X-ray topography. Journal of Crystal Growth, 33, 311—323.CrossRefGoogle Scholar
Yoshimura, J., Miyazaki, T., Wada, T. and Kohra, K. (1979) Measurement of local variations in spacing and orientation of lattice plane of synthetic quartz. Journal of Crystal Growth, 46, 691—700.CrossRefGoogle Scholar
Zeebe, R.E. (1999) An explanation of the effect of seawater carbonate concentration on foraminiferal oxygen isotopes. Geochimica et Cosmochimica Acta, 63, 2001—2007.CrossRefGoogle Scholar
Zheng, Y.-F. (1991) Calculation of oxygen isotope fractionation in metal oxides. Geochimica et Cosmochimica Acta, 55, 2299—2307.Google Scholar
Zheng, Y.-F. (1993a) Calculation of oxygen fractionation in hydroxyl-bearing silicates. Earth and Planetary Science Letters, 120, 247—263.CrossRefGoogle Scholar
Zheng, Y.-F. (1993b) Calculation of oxygen fractionation in anhydrous silicate minerals. Geochimica et Cosmochimica Acta, 57, 1079—1091.CrossRefGoogle Scholar
Zheng, Y.-F. (1993c) Oxygen isotope fractionation in SiO2 and Al2SiO5 polymorphs: effect of crystal structure. European Journal of Mineralogy, 5, 651—658.CrossRefGoogle Scholar
Zheng, Y.-F. (1999) Calculation of oxygen fractionation in minerals. Episodes, 22, 99—106.Google Scholar