Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T03:51:22.677Z Has data issue: false hasContentIssue false

Oxygen diffusion studies. I. A preliminary ion microprobe investigation of oxygen diffusion in some rock-forming minerals

Published online by Cambridge University Press:  05 July 2018

R. Freer
Affiliation:
Grant Institute of Geology, University of Edinburgh, West Mains Road, Edinburgh EH9 3JW
P. F. Dennis
Affiliation:
Department of Geology, Imperial College of Science and Technology, London SW7 2BP

Abstract

The self diffusion of oxygen has been studied in prepared natural crystals of albite, grossular garnet, quartz, and ruffle by isotope exchange with hydrothermal water enriched in 18O, and subsequent analysis by ion microprobe. Measured oxygen diffusion coefficients (D) in quartz (‖c) may be described by D = 1.08 × 10−11 exp(−31.5 kcal/RT) cm2s−1 at 600−750°C and 1 kbar water pressure. For grossular, D = 2.5 × 10−16 cm2s−1 at 1050°C and 8 kbar, and D = 4.8 × 10−17 cm2s−1 at 850 °C and 2 kbar. All ruffle crystals exhibited variable amounts of corrosion, and an approximate diffusion coefficient of D(‖c) = 3.16 × 10−15 cm2s−1 cm2s−1 was obtained at 1050 °C and 1 kbar. Oxygen diffusion coefficients in albite, perpendicular to (001) faces, have been determined as a function of pressure at 600 °C Between 0.5 and 8.0 kbar pressure no systematic variation in the results was observed and most of the data may be described by D = 4.1 (±0.5) × 10−15 cm2s−1. Slow oxygen diffusion rates in quartz and garnet suggest that these minerals should have high ‘closure temperatures’ for oxygen exchange, and may provide reliable oxygen isotope exchange geothermometers.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnsel, G., and Samuel, D. (1962) J. Phys. Chem. Solids, 23, 1707-18.Google Scholar
Anderson, T. F. (1969) J. Geophys. Res. 74, 3918-32.CrossRefGoogle Scholar
Anderson, T. F. (1972) Ibid. 77, 857-61.Google Scholar
Anderson, T. F. and Kasper, R. B. (1975) EOS, Trans. Am. Geophys. Union, 56, 459.Google Scholar
Ando, K., and Oishi, Y. (1974) J. Chem. Phys. 61, 625-9.CrossRefGoogle Scholar
Ando, K., Kurokawa, H., and Oishi, Y. (1981) Commun. Am. Ceram. Soc. C-30.Google Scholar
Arita, M., Hosoya, M., Kobayashi, M., and Someno, M. (1979) J. Am. Ceram. Soc. 62, 443-6.CrossRefGoogle Scholar
Atkinson, A., and Taylor, R. I. (1978) J. Mater. Sci. 13, 427-32.CrossRefGoogle Scholar
Berner, R. A. (1981) In Kinetics of Geochemical Processes (Lasaga, A. C., and Kirkpatrick, R. J., eds.), Reviews in Mineralogy (Mineral. Soc. Am.), 8, 111-34.CrossRefGoogle Scholar
Bottinga, Y., and Javoy, M. (1973) Earth Planet. Sci. Lett. 20, 250-65.CrossRefGoogle Scholar
Castle, J. E., and Surman, P. L. (1967) J. Phys. Chem. 71, 4255-9.CrossRefGoogle Scholar
Choudhury, A., Palmer, D. W., Amsel, G., Curien, H., and Baruch, P. (1965) Solid State Commun. 3, 119-22.CrossRefGoogle Scholar
Clayton, R. N., and Mayeda, T. K. (1963) Geochim. Cosmochim. Acta, 27, 43-52.CrossRefGoogle Scholar
Colby, J. W. (1975) In Practical Scanning Electron Microscopy (Goldstein, J. I., and Yakowitz, H., eds.), Plenum, New York, 529-72.CrossRefGoogle Scholar
Coles, J. N., and Long, J. V. P. (1974) Philos. Mag. 29, 457-71.CrossRefGoogle Scholar
Crank, J. (1975) The Mathematics of Diffusion, 2nd edn. Oxford University Press.Google Scholar
Deines, P. (1977) Geochim. Cosmochim. Aeta, 41, 1709-30.CrossRefGoogle Scholar
Derry, D. J., Lees, D. G., and Calvert, J. M. (1981) J. Phys. Chem. Solids, 42, 57-64.CrossRefGoogle Scholar
Desmons, J., and O'Neil, J. R. (1978) Contrib. Mineral. Petrol. 67, 79-85.CrossRefGoogle Scholar
Freer, R. (1980) J. Mater. Sci. 15, 803-24.CrossRefGoogle Scholar
Freer, R. (1981) Contrib. Mineral. Petrol. 76, 440-54.CrossRefGoogle Scholar
Giletti, B. J. (1974a) In Geochemical Transport and Kinetics (Hofmann, A. W. et al., eds.), Carnegie Institution of Washington, Publication 634, 61-76.Google Scholar
Giletti, B. J. (1974b) Ibid. 107-15.Google Scholar
Giletti, B. J. and Anderson, T. F. (1975) Earth Planet. Sci. Lett. 28, 225-33.CrossRefGoogle Scholar
Giletti, B. J. and Tullis, J. (1977) Ibid. 35, 180-3.Google Scholar
Giletti, B. J. Semet, M. P., and Yund, R. A. (1978) Geochim. Cosmochim. Acta, 42, 45-57.CrossRefGoogle Scholar
Giletti, B. J. Hickey, J. H., and Tullis, T. E. (1979) EOS, Trans. Am. Geophys. Union, 60, 370.Google Scholar
Graham, C. M. (1981) Contrib. Mineral. Petrol., 76, 216-28.CrossRefGoogle Scholar
Hallwig, D., Schactner, R., and Sockel, H. G. (1981) In Proceedings of the 9th International Symposium on the Reactivity of Solids (Dyrek, K. et al., eds.), Elsevier (in press).Google Scholar
Herzog, F. (1962) Industrie-Anzeiger, No. 60.Google Scholar
Hoernes, S., and Friedrichsen, H. (1978) Contrib. Mineral. Petrol. 67, 305-15.CrossRefGoogle Scholar
Hofmann, A. W., Giletti, B. J., Hinthorne, J. R., Andersen, C. A., and Comaford, D. (1974) Earth Planet. Sci. Lett. 24, 48-52.CrossRefGoogle Scholar
Ishitani, T., and Shimizu, R. (1975) Appl. Phys. 6, 241-8.CrossRefGoogle Scholar
Jaoul, O., Froidevaux, C., Durham, W. B., and Michaut, M. (1980) Earth Planet. Sci. Lett. 47, 391-7.CrossRefGoogle Scholar
Javoy, M. (1977) J. Geol. Soc. London, 133, 609-36.CrossRefGoogle Scholar
Jones, M. E. (1978) Ph.D. thesis, University of London (unpublished), 373 pp.Google Scholar
Kasper, R. B. (1975) Ph.D. thesis, Brown University, 143 pp.Google Scholar
Kennedy, G. C., Wasserburg, G. J., Heard, H. C., and Newton, R. C. (1962) Am. J. Sci. 260, 501-21.CrossRefGoogle Scholar
Kilner, J. A., Drennan, J., Dennis, P., and Steele, B. C. H. (1981) Solid State Ionics (in press).Google Scholar
Lazarus, D., and Nachtrieb, N. H. (1963) In Solids Under Pressure (Paul, W., and Warschauer, D. M., eds.), McGraw-Hill, New York, 43-69.Google Scholar
Lin, T. H., and Yund, R. A. (1972) Contrib. Mineral. Petrol. 34, 17784.CrossRefGoogle Scholar
Marshall, D. B., Vernon, R. H., and Hobbs, B. E. (1976) Ibid. 57, 49-54.Google Scholar
Matsuhisa, Y., Goldsmith, J. R., and Clayton, R. N. (1979) Geochim. Cosmochim. Acta, 43, 1131-40.CrossRefGoogle Scholar
Matthews, A., Beckinsale, R. D., and Durham, J. J. (1979) Mineral. Mag. 43, 405-13.CrossRefGoogle Scholar
Matthews, A., Goldsmith, J. R., and Clayton, R. N. (1980) Geol. Soc. Am., Abstracts with Programs, 12, 478.Google Scholar
Merigoux, H. (1968) Bull. Soc. Ft. Mineral. Crystallogr. 91, 51-64.Google Scholar
Misener, D. J. (1974) In Geochemical Transport and Kinetics (Hofmann, A. W. et al., eds.), Carnegie Institution of Washington, Publication 634, 117-29.Google Scholar
Muehlenbachs, K., and Kushiro, I. (1974) Carnegie Inst. Washington Yearb. 73, 232-6.Google Scholar
Muehlenbachs, K., and Kushiro, I. (1975) EOS, Trans. Am. Geophys. Union, 56, 459.Google Scholar
Narayan, J., and Washburn, J. (1973) Acta MetatL 21, 533-8.CrossRefGoogle Scholar
Paldino, A. E., Maguire, E. A., and Rubin, L. G. (1964) J. Am. Ceram. Soc. 47, 280-2.CrossRefGoogle Scholar
Perkins, D., Essene, E. J., Westrum, E. F., and Wall, V. J. (1977) Contrib. Mineral. Petrol. 64, 137-47.CrossRefGoogle Scholar
Reddy, K. P. R., Oh, S. M., Major, L. D., and Cooper, A. R. (1980) J. Geophys. Res. 85, B1, 322-6.CrossRefGoogle Scholar
Reed, D. J., and Wuensch, B. J. (1980) J. Am. Ceram. Soc. 63, 88-92.CrossRefGoogle Scholar
Robin, R., Cooper, A. R., Heuer, A. H. (1973) J. Appl. Phys. 44, 3770-7.CrossRefGoogle Scholar
Schactner, R., and Socket, H. G. (1977) In Reactivity of Solids, Proceedings International Symposium (Eighth) (Wood, J. et al., eds.), Plenum, New York and London, 605-9.Google Scholar
Sonder, E., Spadaro, J. V., and Weeks, R. A. (1981) Commun. Am. Ceram. Soc. C 65-C 66.Google Scholar
Suda, P., Zumsteg, A. E., and Zingg, W. (1978) Proceedings of the 32nd Annual Symposium on Frequency Control. Electronic Industries Association, Washington D.C., 359-63.Google Scholar
Taylor, H. P. Jr., (1974) Econ. Geol. 69, 843-83.CrossRefGoogle Scholar
Vig, I. R., Le Bas, J. W., and Filler, R. L. (1977) Proceedings of the 31st Annual Symposium on Frequency Control, Electronic Industries Association, Washington D.C., 131-43.Google Scholar
Vig, I. R., Brandmayr, R. J., and Filler, R. L. (1978) Ibid. 32nd Annual Symposium, 351-8.Google Scholar
Walther, J. V., and Helgeson, H. C. (1977) Am. J. Sci. 277, 1315-51.CrossRefGoogle Scholar
White, S. (1975) Contrib. Mineral. Petrol. 50, 287-304.CrossRefGoogle Scholar
Wilson, I. H. (1973) Rad. Effects, 18, 95-103.CrossRefGoogle Scholar
Wittmaack, K. (1977) Appl. Phys. 12, 149-56.CrossRefGoogle Scholar
Wittmaack, K. (1978) In Proceedings 8th International Conference on X-ray optics and microanalysis (Beaman, D. et al., eds.), Science Press, Princeton N.J., 32-8.Google Scholar
Yund, R. A., and Anderson, T. F. (1974) In Geochemical Transport and Kinetics (Hofmann, A. W. et al., eds.), Carnegie Institution of Washington, Publication 634, 99-105.Google Scholar
Yund, R. A., and Anderson, T. F. (1978) Geochim. Cosmochim. Acta, 42, 235-9.CrossRefGoogle Scholar
Yund, R. A., Smith, B. M., and Tullis, J. (1980) Geol. Soc. Am., Abstracts with Programs, 12, 553.Google Scholar
Zinner, E. (1980) Scanning, 3, 57-78.CrossRefGoogle Scholar
Zinner, E., Walker, R. M., Chaumont, J., and Dran, J. C. (1976) Proc. 7th Lunar Sci. Conf. 953-84.Google Scholar