Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-15T11:20:11.878Z Has data issue: false hasContentIssue false

Origin and development of flexibility in asbestiform fibres

Published online by Cambridge University Press:  05 July 2018

M. Germine
Affiliation:
Geology Department, Rutgers University, Newark, New Jersey, USA
J. H. Puffer
Affiliation:
Geology Department, Rutgers University, Newark, New Jersey, USA

Abstract

Quantitative measurement of relative flexibility have been made on amphibole fibres based on calculation of bending strain of maximally bent fibre segments. Enhanced flexibility was found to be an inverse function of fibre diameter. Asbestos is therefore a morphological entity. These conclusions are supported by consistent observations of fibre diameter/flexibility relationships in amphiboles, serpentine, and rutile. Flexibility may arise from growth of thin crystals (primary flexibility), or from crystal diameter reduction (secondary flexibility). Mechanisms for secondary flexibility in amphiboles include splitting and solution along cleavage planes. Gross morphological characteristics are a poor indicator of microscopic habit, since coarsely fibrous minerals such as picrolite antigorite may not be fibrous after particle width reduction, and secondary asbestiform fibres are often derived from minerals with a non-fibrous morphology on gross examination.

Type
Silicate Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berner, R. A., Sjoberg, E. L., Velbel, M. A., and Krom, M. D. (1980) Science 207, 1205-6.CrossRefGoogle Scholar
Brown, R. C., Chamberlain, M., Davies, R., Gaffen, J., and Skidmore, J. W. (1979) J. Environ. Path. Toxicol. 2, 1369-83.Google Scholar
Campbell, W. J., Blake, R. L., Brown, L. L., Cattier, E. E., and Sjoberg, J. J. (1977) U.S. Bur. Mines Inform. Circ. 8751. 56 pp.Google Scholar
Cook, P. M., Palekar, L. D., and Coffin, D. L. (1982) Toxicol. Lett. 13, 151-8.CrossRefGoogle Scholar
Deer, W. A., Howie, R. A., and Zussman, J. (1963) Rock forming minerals. 2, Longmans, 379 pp.Google Scholar
De Toit, A. L. (1945) Trans. Geol. Soc. S. Africa, 48, 161-76.Google Scholar
Dorling, M., and Zussman, J. (1987) Lithos 20, 469-89.CrossRefGoogle Scholar
Eggleton, R. A., and Boland, J. N. (1982) Clays Clay Min. 30, 11-20.Google Scholar
Germine, M. (1981) M. S. Thesis, Rutgers University, Newark, N. J.Google Scholar
Germine, M. (1985) Mineral. Record 16, 483-4.Google Scholar
Germine, M. (1986) New Jersey Geol. Rep. 15, 19 pp.Google Scholar
Germine, M. and Puffer, J. H. (1981) Environ. Geol 3, 337-51.CrossRefGoogle Scholar
Griffith, A. R. (1921) Phil. Trans. R. Soc. Lond Ser A, 221, 163-98.Google Scholar
Hearle, J. W. S., Grosberg, P. and Backer, S. (1969) Structural Mechanics of Fibres, Yarns, and Fabrics. Wiley, 469 pp.Google Scholar
Himmelfarb, D. (1957) The Technology of Cordage Fibres and Rope. Textile Book Publishers, Inc., 370 PP.Google Scholar
Ladoo, R. B. and Meyers, W. M. (1951) Nonmetallic Minerals, McGraw-Hill, 605 pp.Google Scholar
Leake, B. E. (1978) Mineral. Mag. 42, 533-63.CrossRefGoogle Scholar
Mumpton, F. A. (1974) Siemens Rev. 41, 75-84.Google Scholar
National Research Council (1984) Asbestiform Fibres: Nonoccupational Health Risks. National Academy Press, 334 pp.Google Scholar
Puffer, J. H., Germine, M., Hurtubise, D. O., Mrotek, K. A., and Bello, D. M. (1980) Environ. Res. 23, 233-46.CrossRefGoogle Scholar
Puffer, J. H., Germine, M., Hurtubise, D. O., Mrotek, K. A., and Bello, D. M., Germine, M., and Maresca, G. P. (1987) Arch. Environ. Contam. Toxicol. 16, 103-9.CrossRefGoogle Scholar
Rice, S. J. (1957) California Div. Mines Bull. 176, 176-- 88.Google Scholar
Rohl, A. N., Langer, A. M., Selikoff, I. J., Tordini, R., Klinentidis, R., Bowes, D. R., and Skinner, D. L. (1976) J. Toxicol. Environ. Health 2, 255-84.CrossRefGoogle Scholar
Stanton, M. F., Layard, M., Tegeris, A., Miller, E., May, M., and Kent, E. (1977) J. Nat Cancer Inst. 58, 587-97.CrossRefGoogle Scholar
Veblen, D. R., and Buseck, P. R. (1980) Am. Mineral. 65, 599-623.Google Scholar
Veblen, D. R., and Buseck, P. R. and Burnham, C. W. (1977) Science 198,359- 65.CrossRefGoogle Scholar
Zoltai, T. (1979) Ann. New YorkAcad. Sci. 330, 621-43.CrossRefGoogle Scholar
Zoltai, T. (1981) Amphiboles and other Hydrous Pyriboles—Mineralogy (Veblen, D. R., ed.), 237-78. Mineral. Soc. America.CrossRefGoogle Scholar
Zussman, J. (1977) Phil. Trans. R. Soc. Lond. 286, 610.Google Scholar
Zussman, J. (1979) Nat. Bur. Standards Spec. Publ. 506, 49-64.Google Scholar
Zussman, J. (1987) Mineral. Mag. 51, 129-138.CrossRefGoogle Scholar