Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-03T01:53:02.338Z Has data issue: false hasContentIssue false

On the complex H-bonding network in paravauxite, Fe2+Al2(PO4)2(OH)2·8H2O: A single-crystal neutron diffraction study

Published online by Cambridge University Press:  05 July 2018

G. D. Gatta*
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Botticelli 23, I-20133 Milan, Italy CNR – Istituto di Cristallografia, Sede di Bari, Via G. Amendola 122/o, I-70126 Bari, Italy
P. Vignola
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Botticelli 23, I-20133 Milan, Italy CNR – Istituto per la Dinamica dei Processi Ambientali, Via M. Bianco 9, I-20131 Milan, Italy
M. Meven
Affiliation:
Institut für Kristallographie, RWTH Aachen at Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstasse 1, D-85748 Garching, Germany Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, D-85747 Garching, Germany
*

Abstract

The crystal structure and the chemical composition of a paravauxite from the Siglo Veinte Mine, Llallagua, Bustillo Province, Potosi Department, Bolivia [Fe(Fe0.9162+Mn0.0162+Mg0.064Ca0.002)∑0.998Al(1)Al(2)Al2.005P(P1.998Si0.002)∑2O8(OH)2·8H2O, a = 5.242(1) Å, b = 10.569(2) Å, c = 6.970(2) Å, α = 106.78(3)°, β = 110.81(2)° and γ = 72.29(2)°, space group P], was investigated by single-crystal neutron diffraction and electron microprobe analysis in wavelength-dispersive mode. Neutron-intensity data were collected at 293 K and anisotropic structure refinement was performed. At the end of the refinement no peak larger than ±1.3 fm/Å3 was present in the final difference-Fourier map of the nuclear density. The final statistical index was R1 = 0.0495 for 194 refined parameters and 1678 unique reflections with Fo > 4σ(Fo). Eleven independent H sites (i.e. H(1), H(2), H(3), H(4A), H(4B), H(5), H(6), H(7), H(8), H(9A) and H(9B)), all at ∼1 Å from the respective O sites, were located successfully. H(4A) and H(4B) and H(9A) and H(9B) are two mutually exclusive subsite couples only 0.4−0.6 Å apart. The complex H-bonding scheme in the paravauxite structure is now well defined and 12 independent H bonds, with an energetically favourable bonding configuration, are described. A comparison between the previous experimental findings based on Raman and infrared spectroscopy and those obtained in this present study is carried out. Paravauxite provides the rare opportunity to investigate the H-bond configuration of coexisting hydroxyl groups and H2O molecules in minerals by single-crystal neutron diffraction. H2O is present as zeolitic (i.e. lying in the cavities) and non-zeolitic H2O (i.e. bonded to Al or Fe to form Al or Fe octahedra).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baur, W.H. (1969) The crystal structure of paravauxite, Fe2+Al2(PO4)2(OH)2 (OH2)6·2H2O. Neues Jahrbuch für Mineralogie, Monatshefte, 1969, 430433.Google Scholar
Baur, W.H. and Rama Rao, B. (1967) The crystal structure of metavauxite. Naturwissenschaften, 51, 561.CrossRefGoogle Scholar
Baur, W.H. and Rama Rao, B. (1968) The crystal structure and the chemical composition of vauxite. American Mineralogist, 53, 10251033.Google Scholar
Busing, W.R. and Levy, H.A. (1964) The effect of thermal motion on the estimation of bond lengths from diffraction measurements. Acta Crystallographica, 17, 142146.CrossRefGoogle Scholar
Farrugia, L.J. (1999) WinGX suite for small-molecule single-crystal crystallography. Journal of Applied Crystallography, 32, 837838.CrossRefGoogle Scholar
Frost, R.L., Scholz, R., Lópes, A., Xi, Y., Žigovečki Gobac, Z. and Campos Horta, L.F. (2013) Raman and Infrared spectroscopic characterization of the phosphate mineral paravauxite Fe2+Al2(PO4)2 (OH)2·8H2O. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 116, 491496.CrossRefGoogle ScholarPubMed
Gatta, G.D., Nénert, G. and Vignola, P. (2013a) Coexisting hydroxyl groups and H2O molecules in minerals: A single-crystal neutron diffraction study of eosphorite, MnAlPO4(OH)2·H2O. American Mineralogist, 98, 12971301.CrossRefGoogle Scholar
Gatta, G.D., Vignola, P., Meven, M. and Rinaldi, R. (2013b) Neutron diffraction in gemology: Singlecrystal diffraction study of brazi lianite, NaAl3(PO4)2(OH)4 . American Mineralogist, 98, 16241630.CrossRefGoogle Scholar
Gatta, G.D., Jacobsen, S.D., Vignola, P., McIntyre, G.J., Guastella, G. and Abate, L.F. (2014) Single-crystal neutron diffraction and Raman spectroscopic study of hydroxylherderite, CaBePO4(OH,F). Mineralogical Magazine, 78, 723737.CrossRefGoogle Scholar
Gordon, S.G. (1922) Vauxite and paravauxite, Two new minerals from Llallagua, Bolivia. Proceedings of the Academy of Natural Sciences of Philadelphia, 75, 261270.Google Scholar
Gordon, S.G. (1927) A preliminary note on metavauxite, a new phosphate mineral from Llallagua, Bolivia. American Mineralogist, 12, 264.Google Scholar
Gordon, S.G. (1944) The mineralogy of the tin mines of Cerro de Llallagua, Bolivia. Proceedings of the Academy of Natural Sciences of Philadelphia, 96, 279359.Google Scholar
Hawthorne, F.C. (1988) Sigloite: The oxidation mechanism in [M3+ 2(PO4)2(OH)2(H2O)2] structures. Mineralogy and Petrology, 38, 201211.CrossRefGoogle Scholar
Huminicki, D.M.C. and Hawthorne, F.C. (2002) The crystal chemistry of the phosphate minerals. Pp. 123–253 in: Phosphates: Geochemical, Geobiological, and Materials Importance (M.L. Kohn, J. Rakovan, and J.M. Hughes, editors). Reviews in Mineralogy & Geochemistry, 48, Mineralogical Society of America and the Geochemical Society, Washington DC.CrossRefGoogle Scholar
Hurlbut, C.S. and Honea, R. (1962) Sigloite, a new mineral from Llallagua, Bolivia. American Mineralogist, 47, 18.Google Scholar
Larson, A.C. (1967) Inclusion of secondary extinction in least–squares calculations. Acta Crystallographica, 23, 664665.CrossRefGoogle Scholar
Moore, P. (1965) The Crystal Structure of Laueite, Mn+2Fe2 3+(OH)2(PO4)2(H2O)8·2H2O. American Mineralogist, 50, 18841892.Google Scholar
Plieth, K., Ruban, G. and Smolczyk, H.G. (1965) Zur Kristallstruktur des Laueits, Fe2Mn[PO4/OH]2·8H2O. Acta Crystallographica, 19, 485.CrossRefGoogle Scholar
Sears, V.F. (1986) Neutron scattering lengths and crosssections. Pp. 521–550 in: Neutron Scattering, Methods of Experimental Physics (K. Sköld and D.L. Price, editors). Vol. 23A. Academic Press, New York.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Sillitoe, R.H., Halls, C. and Grant, J.N. (1975) Porphyry tin deposits in Bolivia. Economic Geology, 70, 913927.CrossRefGoogle Scholar
Supplementary material: File

Gatta et al. supplementary material

CIF

Download Gatta et al. supplementary material(File)
File 43.7 KB