Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T07:58:31.507Z Has data issue: false hasContentIssue false

On lithium and sodium trivalent-metal pyroxenes and crystal-field effects

Published online by Cambridge University Press:  05 July 2018

W. L. Brown*
Affiliation:
Laboratoire de Minéralogie et de cristallographie, Faculté des sciences, Paris

Summary

Of the metals in the series Sc, V, Cr, Mn, Fe, and Ga pyroxenes of the type LiM3+Si2O6 were obtained only from Sc, V, Cr, and Fe in dry synthesis experiments near 1000 °C. Ga and A1 gave keatite derivatives (so-called ‘β-spodumenes’) by dry heating; α-Ga-eucryptite was obtained from Ga hydrothermally at pressures between 4·5 and 6·5 kb. Mn gave Mn2O3. The lattice parameters of the pyroxenes vary irregularly with atomic number. This variation and the failure to produce a Mn3+-pyroxene can be explained by the crystal-field theory. At high temperatures A1 and Ga are too small to stabilize a silicate pyroxene phase even at moderately high pressures and form less dense tectosilicates. The octahedral stabilization energy for Cr3+ ensures that Cr, which has the same size as Ga, forms a pyroxene.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appleman, (D.E.) and Stewart, (D.B.), 1966. Progr. Abstr. Geol. Soc. Amer. Meeting, San Francisco.Google Scholar
Brown, (W.L.), 1968. Papers and Proc. LM.A. 5th Gen. Meeting, Cambridge, 2966. 334.Google Scholar
Burns, (R.G.) and Fvre, (W.S.), 1967. Crystal-field Theory and the Geochemistry of Transition Elements, 259-85, in Abelson, P. H., 1967. Researches in Geochemistry, 2. New York (J. Wiley).Google Scholar
Christensen, (A.N.) and Hazell, (R.G.), 1967. Acta Chem. Scand. 21, 1425.-9.CrossRefGoogle Scholar
Clark, (J.R.), Applrman, (D.E.), and Papike, (J.J.), 1968. Contr. Min. Petr.. 20, 81.5.CrossRefGoogle Scholar
Clark, (J.R.), Applrman, (D.E.), and Papike, (J.J.), 1969. Min. Soc. Amer. Spee. Pap. 2, 31.50.Google Scholar
Edgar, (A.D.), 1968. Papers and Proc. I.M.A. 5th Gen. Meeting, Cambridge, 1966, 222-31.Google Scholar
Freed, (R.L.) and Peaeor, (D.R.), 1967. Amer. Min. 52, 709.20.Google Scholar
Frondel, (C.) and Klein, (C.), 1965. Science. 149, 742.4.CrossRefGoogle Scholar
Hahn, (T.) and Behruzi, (M.), 1968. Zeits. Krist. 127, 160.3.CrossRefGoogle Scholar
Hays, (F.), 1966. Amer. Min. 51, 1524-9.Google Scholar
Ivo, (J.) and Frondel, (C.), 1968. Ibid. 53, 1276-80.Google Scholar
Monoz, (J.L.), 1968. Ann. Rept. Dir. Geophys. Lab. for 1966-1967. 370-4.Google Scholar
Monoz, (J.L.), 1969. Min. Soc. Amer. Spec. Pap.. 2, 203.9.Google Scholar
Neuhaus, (A.) and Meyer, (H.J.), 1965. Naturwiss.. 52, 639.40. Also A. SKOKAN, Diplomarbeit, Min. Inst. Univ. Bonn, 1966.CrossRefGoogle Scholar
Nolan, (J.), 1969. Min. Mag. 37, 216.29.CrossRefGoogle Scholar
Nolan, (J.), and Edgar, (A.D.), 1963. Ibid. 33, 625.34.Google Scholar
Orgel, (L.E.), 1960. An Introduction to Transition-metal Chemistry: Ligand-field Theory. London (Methuen and Co.).Google Scholar
Prewltt, (C.T.) and Burnham, (C.W.), 1966. Amer. Min. 51, 956.75.Google Scholar
Strens, (R.G.J.), 1966. Min. Mag. 35, 777.81.Google Scholar
Whittaker, (E.J.W.), 1960. Acta Cryst. 13, 741.2.CrossRefGoogle Scholar