Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-02T21:38:30.927Z Has data issue: false hasContentIssue false

Omariniite, Cu8Fe2ZnGe2S12, the germanium analogue of stannoidite, a new mineral species from Capillitas, Argentina

Published online by Cambridge University Press:  02 January 2018

Luca Bindi*
Affiliation:
Dipartimento di Science de la Terra, Università degli Studi di Firenze, Via G. La Pira, 4, I-50121 Firenze, Italy CNR – Istituto di Geoscienze e Georisorse, Sezione di Firenze, Via G. La Pira 4, I-50121 Firenze, Italy
Hubert Putz
Affiliation:
Friedl ZT GmbH Rohstoff- und Umwelt Consulting, Karl-Lötsch-Strasse 10, A-4840 Vöcklabruck, Austria
Werner H. Paar
Affiliation:
Pezoltgasse 46, A-5020 Salzburg, Austria
Christopher J. Stanley
Affiliation:
Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
*

Abstract

Omariniite, ideally Cu8Fe2ZnGe2S12, represents the Ge-analogue of stannoidite and was found in bornite-chalcocite-rich ores near the La Rosario vein of the Capillitas epithermal deposit, Catamarca Province, Argentina. The mineral is associated closely with three other Ge-bearing minerals (putzite, catamarcaite, rarely zincobriartite) and bornite, chalcocite, digenite, covellite, sphalerite, tennantite, luzonite, wittichenite, thalcusite and traces of mawsonite. The width of the seams rarely exceeds 60 μm, their length can attain several 100 μm. The mineral is opaque, orange-brown in polished section, has a metallic lustre and a brownish-black streak. It is brittle, and the fracture is irregular to subconchoidal. Neither cleavage nor parting are observable in the sections. In plane-polarized light omariniite is brownish-orange and has a weak pleochroism. Internal reflections are absent. The mineral is distinctly anisotropic with rotation tints varying between brownish-orange and greenish-brown. The average result of 45 electron-microprobe analyses is Cu 42.18(34), Fe 9.37(26), Zn 5.17(43), In 0.20(6), Ge 11.62(22), S 31.80(20), total 100.34(46) wt.%. The empirical formula, based on Σ(Me + S) = 25, is Cu8.04(Fe2.03In0.02)Σ2.05Zn0.96 Ge1.94S12.01, ideally Cu8+Fe2+Zn2+Ge24+S122-. Omariniite is orthorhombic, space group I222, with unit-cell parameters: a = 10.774(1), b = 5.3921(5), c = 16.085(2) Å, V = 934.5(2) Å3, a:b:c = 1.9981:1:2.9831, Z = 2. X-ray single-crystal studies (R1 = 0.023) revealed the structure to be a sphalerite derivative identical to that of stannoidite. Omariniite is named after Dr. Ricardo Héctor Omarini (1946–2015), Professor at the University of Salta, for his numerous contributions to the geology of Argentina.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bindi, L., Keutsch, F.N. and Zaccarini, F. (2016) Spryite, IMA 2015-116. CNMNC Newsletter No. 30, April 2016, page 412.Mineralogical Magazine, 80, 407413.Google Scholar
Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Effenberger, H., Lengauer, C.L., Libowitky, E., Putz, H. and Topa, D. (2015) Lislkirchnerite, IMA 2015-064.Google Scholar
CNMNC Newsletter No. 27, October 2015, page 1230. Mineralogical Magazine, 79, 1229–1236.Google Scholar
Eulenberger, G. (1977) Die Kristallstruktur der Tieftemperaturmodifikation von Ag8GeS6 . Monatshefte für Chemie, 108, 901913.CrossRefGoogle Scholar
Goh, S.W., Buckley, A.N., Lamb, R.N., Rosenberg, R.A. and Moran, D. (2006) The oxidation states of copper and iron in mineral sulfides, and the oxides formed on initial exposure of chalcopyrite and bornite to air. Geochimica et Cosmochimica Acta, 70, 22102228.CrossRefGoogle Scholar
Höll, R., Kling, M. and Schroll, E. (2007) Metallogenesis of germanium – a review. Ore Geology Reviews, 30, 145180.CrossRefGoogle Scholar
Kato, A. (1969) Stannoidite, Cu5(Fe,Zn)2SnS8, a new stannite-like mineral from the Konjo mine, Okayama Prefecture, Japan. Bulletin of the National Science Museum Tokyo, 12, 165172.Google Scholar
Knight, K.S., Marshall, W.G. and Zochowski, S.W. (2011) The low temperature and high-pressure thermoelastic and structural properties of chalcopyrite, CuFeS2 . The Canadian Mineralogist, 49, 10151034.CrossRefGoogle Scholar
Kraus, W. and Nolze, G. (1996) PowderCell – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29, 301303.CrossRefGoogle Scholar
Kudoh, Y. and Takéuchi, Y. (1976) The superstructure of stannoidite. Zeitschrift für Kristallographie, 144, 145160.CrossRefGoogle Scholar
Márquez-Zavalía, M.F. (1988) Mineralogía y genesis del yacimiento Capillitas (Catamarca, Republica Argentina). PhD thesis, University of Salta, Argentina.Google Scholar
Márquez-Zavalía, M.F. (1999) El yacimiento Capillitas, Catamarca. Pp. 16431652 in: Recursos minerals de la República Argentina (Zappettini, O., editor). Instituto de Geología y Recursos Minerales SEGEMAR, Anales 35.Google Scholar
Márquez-Zavalía, M.F., Galliski, M.A., Drábek, M., Vymazalová, A., Watanabe, Y., Murakami, H. and Bernhardt, H.-J. (2015) Ishiharaite, (Cu,Ga,Fe,In,Zn) S, a new mineral from the Capillitas mine, Northwestern Argentina. The Canadian Mineralogist, 52, 969980.CrossRefGoogle Scholar
McDonald, A.M., Stanley, C.J., Ross, K.C. and Nestola, F. (2016) Zincobriartite, IMA 2015-094. CNMNC Newsletter No. 29, February 2016, page 203. Mineralogical Magazine, 80, 199205.Google Scholar
Melcher, F. (2003) The Otavi Mountain Land in Namibia: Tsumeb, germanium and snowball earth. Mitteilungen der Österreichischen Mineralogischen Gesellschaft, 148, 413435.Google Scholar
Oxford Diffraction (2006) CrysAlis RED (Version 1.171.31.2) and ABSPACK in CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.Google Scholar
Paar, W.H. and Putz, H. (2005) Germanium associated with epithermal mineralization: examples from Bolivia and Argentina. 8th Biennial SGA Meeting (Beijing), Proceedings 3, 4851.Google Scholar
Paar, W.H., Roberts, A.C., Berlepsch, P., Armbruster, T., Topa, D. and Zagler, G. (2004) Putzite, (Cu4.7Ag3.3)Σ8 GeS6, a new mineral species from Capillitas, Catamarca, Argentina: description and crystal structure. The Canadian Mineralogist, 42, 17571769.CrossRefGoogle Scholar
Putz, H. (2005) Mineralogy and Genesis of Epithermal Ore Deposits at Capillitas, Catamarca Province, NW-Argentina. PhD thesis, Salzburg University, Austria.Google Scholar
Putz, H., Paar, W.H., Sureda, R.J. and Roberts, A.C. (2002) Germanium mineralization at Capillitas, Catamarca Province, Argentina. 18th General Meeting of the IMA, (Edinburgh), Abstracts, 265.Google Scholar
Putz, H., Paar, W.H., Topa, D., Makovicky, E. and Roberts, A.C. (2006) Catamarcaite, Cu6GeWS8, a new germanium sulfide mineral species from Capillitas, Catamarca, Argentina: Description, Paragenesis and Crystal Structure. The Canadian Mineralogist, 44, 14811497.CrossRefGoogle Scholar
Putz, H., Paar, W.H. and Topa, D. (2009) A contribution to the knowledge of the mineralization at Capillitas, Catamarca. Revista de la Asociación Argentina, 64(3), 514524.Google Scholar
Sasso, A.M. (1997) Geological Evolution and Metallogenetic Relationships of the Farallón Negro Volcanic Complex, NW Argentina. PhD thesis, Queen's University, Kingston, Ontario, Canada.Google Scholar
Sasso, A.M. and Clark, A.H. (1998) The Farallon Negro group, northwest Argentina: magmatic, hydrothermal and tectonic evolution and implications for Cu-Au metallogeny in the Andean back-arc. Society of Economic Geology, Newsletter, 34, 118.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Yamanaka, T. and Kato, A. (1976) Mössbauer effect study of 57Fe and 119Sn in stannite, stannoidite, and mawsonite. American Mineralogist, 61, 260265.Google Scholar
Young, B.B. and Millman, A.P. (1964) Microhardness and deformation characteristics of ore minerals. Transactions of the Institution of Mining and Metallurgy, 73, 437466.Google Scholar
Wilson, A.J.C. (Editor) (1992) International Tables for Crystallography, Volume C: Mathematical, Physical and Chemical Tables. Kluwer Academic, Dordrecht, The Netherlands.Google Scholar