Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T02:31:01.609Z Has data issue: false hasContentIssue false

Nickolayite, FeMoP, a new natural molybdenum phosphide

Published online by Cambridge University Press:  30 May 2022

Mikhail N. Murashko
Affiliation:
Institute of Earth Sciences, Saint-Petersburg State University, Universitetskaya Nab. 7/9, St. Petersburg, 199034, Russia
Sergey N. Britvin*
Affiliation:
Institute of Earth Sciences, Saint-Petersburg State University, Universitetskaya Nab. 7/9, St. Petersburg, 199034, Russia Nanomaterials Research Center, Kola Science Center, Russian Academy of Sciences, Fersman Str. 14, Apatity, 184200, Russia
Yevgeny Vapnik
Affiliation:
Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev, POB 653, Beer-Sheva, 84105, Israel
Yury S. Polekhovsky
Affiliation:
Institute of Earth Sciences, Saint-Petersburg State University, Universitetskaya Nab. 7/9, St. Petersburg, 199034, Russia
Vladimir V. Shilovskikh
Affiliation:
Geomodel Resource Center, Saint-Petersburg State University, Ulyanovskaya Str. 1, St. Petersburg, 198504, Russia
Anatoly N. Zaitsev
Affiliation:
Institute of Earth Sciences, Saint-Petersburg State University, Universitetskaya Nab. 7/9, St. Petersburg, 199034, Russia
Oleg S. Vereshchagin
Affiliation:
Institute of Earth Sciences, Saint-Petersburg State University, Universitetskaya Nab. 7/9, St. Petersburg, 199034, Russia
*
*Author for correspondence: Sergey N. Britvin, Email: [email protected]

Abstract

Nickolayite, FeMoP, is a new terrestrial phosphide structurally related to allabogdanite (high-pressure modification of (Fe,Ni)2P), and the meteoritic phosphides florenskyite, FeTiP and andreyivanovite, FeCrP. From the point of view of chemical composition, nickolayite is an Fe-analogue of monipite, MoNiP. The mineral was discovered in the Daba-Siwaqa complex, Central Jordan, a part of the pyrometamorphic Hatrurim Formation (the Mottled Zone), whose outcrops encompass a 150 × 200 km area around the Dead Sea in the Middle East. Nickolayite appears as an accessory phase in the fused clinopyroxene–plagioclase rocks texturally resembling gabbro–dolerite. The irregularly shaped grains of the mineral, up to 80 μm in size are associated with baryte, tridymite, chromite, hematite, pyrrhotite, fluorapatite, titanite and powellite. Macroscopically, nickolayite grains possess light-grey to greyish-white colour and metallic lustre. The mineral is ductile. The mean VHN hardness (50 g load) is 538 kg mm–2. The calculated density based on the empirical formula and the unit-cell parameters is 7.819 g cm–1. In reflected light, nickolayite has a white colour, with no bireflectance or pleochroism. The COM approved reflectance values [Rmax/Rmin (%), λ(nm)] are: 48.5/46.5 (470), 50.5/48.5 (546), 51.8/49.9 (589) and 53.9/52.0 (650). The chemical composition of the holotype crystal is (electron microprobe, average of 4 analyses, wt.%): Fe 32.21, Mo 47.06, Ni 3.69, Co 0.13, P 17.45, total 100.54, that corresponds to the empirical formula Fe1.00(Mo0.87Ni0.11Fe0.02)Σ1.00P1.00 and an ideal formula of FeMoP. Nickolayite is orthorhombic, space group Pnma, unit-cell parameters of holotype material are: a = 5.9519(5), b = 3.7070(3), c = 6.8465(6) Å, V = 151.06(2) Å3 and Z = 4. The crystal structure of holotype material was solved and refined to R1 = 0.0174 based on 251 unique observed reflections. The origin of the mineral is probably connected to the processes of co-reduction of molybdenum- and phosphorus-bearing minerals during high-temperature pyrometamorphic processes.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Deceased 29 September 2018

Associate Editor: Michael Rumsey

References

Bogoch, R., Gilat, A., Yoffe, O. and Ehrlich, S. (1999) Rare earth trace element distributions in the Mottled Zone complex, Israel. Israel Journal of Earth Sciences, 48, 225234.Google Scholar
Britvin, S.N., Rudashevsky, N.S., Bogdanova, A.N. and Shcherbachov, D.K. (1999) Palladodymite (Pd,Rh)2As, a new mineral from a placier of the Miass River, the Urals. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 128, 104107 [in Russian].Google Scholar
Britvin, S.N., Rudashevsky, N.S., Krivovichev, S.V., Burns, P.C. and Polekhovsky, Yu.S. (2002) Allabogdanite, (Fe,Ni)2P, a new mineral from the Onello meteorite: the occurrence and crystal structure. American Mineralogist, 87, 12451249.CrossRefGoogle Scholar
Britvin, S.N., Murashko, M.N., Vapnik, Ye., Polekhovsky, Yu.S. and Krivovichev, S.V. (2015) Earth's phosphides in Levant and insights into the source of Archaean prebiotc phosphorus. Scientific Reports, 5, 8355.CrossRefGoogle Scholar
Britvin, S.N., Murashko, M.N., Vapnik, Ye., Polekhovsky, Yu.S. and Krivovichev, S.V. (2017a) Barringerite Fe2P from pyrometamorphic rocks of the Hatrurim Formation, Israel. Geology of Ore Deposits, 59, 619625.CrossRefGoogle Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017b) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 146, 104107 [in Russian].Google Scholar
Britvin, S.N., Murashko, M.N., Vapnik, Ye., Polekhovsky, Yu.S., Krivovichev, S.V., Vereshchagin, O.S., Vlasenko, N.S., Shilovskikh, V.V. and Zaitsev, A.N. (2019a) Zuktamrurite, FeP2, a new mineral, the phosphide analogue of löllingite, FeAs2. Physics and Chemistry of Minerals, 46, 361369.CrossRefGoogle Scholar
Britvin, S.N., Vapnik, Ye., Polekhovsky, Yu.S., Krivovichev, S.V., Krzhizhanovskaya, M.G., Gorelova, L.A., Vereshchagin, O.S., Shilovskikh, V.V. and Zaitsev, A.N. (2019b) Murashkoite, FeP, a new terrestrial phosphide from pyrometamorphic rocks of the Hatrurim Formation, Southern Levant. Mineralogy and Petrology, 113, 237248.CrossRefGoogle Scholar
Britvin, S.N., Shilovskikh, V.V., Pagano, R., Vlasenko, N.S., Zaitsev, A.N., Krzhizhanovskaya, M.G., Lozhkin, M.S., Zolotarev, A.A. and Gurzhiy, V.V. (2019c) Allabogdanite, the high-pressure polymorph of (Fe,Ni)2P, a stishovite-grade indicator of impact processes in the Fe–Ni–P system. Scientific Reports, 9, 1047.CrossRefGoogle Scholar
Britvin, S.N., Murashko, M.N., Vapnik, Ye., Polekhovsky, Yu.S., Krivovichev, S.V., Krzhizhanovskaya, M.G., Vereshchagin, O.S., Shilovskikh, V.V. and Vlasenko, N.S. (2020a) Transjordanite, Ni2P, a new terrestrial and meteoritic phosphide, and natural solid solutions barringerite–transjordanite (hexagonal Fe2P–Ni2P). American Mineralogist, 105, 428436.CrossRefGoogle Scholar
Britvin, S.N., Murashko, M.N., Vapnik, Ye., Polekhovsky, Yu.S., Krivovichev, S.V., Vereshchagin, O.S., Shilovskikh, V.V., Vlasenko, N.S. and Krzhizhanovskaya, M.G. (2020b) Halamishite, Ni5P4, a new terrestrial phosphide in the Ni–P system. Physics and Chemistry of Minerals, 2020, 3.CrossRefGoogle Scholar
Britvin, S.N., Murashko, M.N., Vapnik, Ye., Polekhovsky, Yu.S., Krivovichev, S.V., Vereshchagin, O.S., Shilovskikh, V.V. and Krzhizhanovskaya, M.G. (2020c) Negevite, the pyrite-type NiP2, a new terrestrial phosphide. American Mineralogist, 105, 422427.CrossRefGoogle Scholar
Britvin, S.N., Murashko, M.N., Vapnik, Ye., Vlasenko, N.S., Krzhizhanovskaya, M.G., Vereshchagin, O.S., Bocharov, V.N. and Lozhkin, M.S. (2021a) Cyclophosphates, a new class of native phosphorus compounds, and some insights into prebiotic phosphorylation on early Earth. Geology, 49, 382386.CrossRefGoogle Scholar
Britvin, S.N., Vereshchagin, O.S., Shilovskikh, V.V., Krzhizhanovskaya, M.G., Gorelova, L.A., Vlasenko, N.S., Pakhomova, A.S., Zaitsev, A.N., Zolotarev, A.A., Bykov, M., Lozhkin, M.S. and Nestola, F. (2021b) Discovery of terrestrial allabogdanite (Fe,Ni)2P, and the effect of Ni and Mo substitution on the barringerite-allabogdanite high-pressure transition. American Mineralogist, 106, 944952.CrossRefGoogle Scholar
Britvin, S.N., Krzhizhanovskaya, M.G., Zolotarev, A.A., Gorelova, L.A., Obolonskaya, E.V., Vlasenko, N.S., Shilovskikh, V.V. and Murashko, M.N. (2021c) Crystal chemistry of schreibersite, (Fe,Ni)3P. American Mineralogist, 106, 15201529.CrossRefGoogle Scholar
Britvin, S.N., Murashko, M.N., Krzhizhanovskaya, M.G., Vereshchagin, O.S., Vapnik, Ye., Shilovskikh, V.V., Lozhkin, M.S. and Obolonskaya, E.V. (2022a) Nazarovite, Ni12P5, a new terrestrial and meteoritic mineral structurally related to nickelphosphide, Ni3P. American Mineralogist, doi:10.2138/am-2022-8219.CrossRefGoogle Scholar
Britvin, S.N., Murashko, M.N., Vereshchagin, O.S., Vapnik, Ye., Shilovskikh, V.V., Vlasenko, N.S. and Permyakov, V.V. (2022b) Expanding the speciation of terrestrial molybdenum: discovery of polekhovskyite, MoNiP2, and insights into the sources of Mo-phosphides in the Dead Sea Transform area, American Mineralogist, doi:10.2138/am-2022-8261.Google Scholar
Burg, A., Starinsky, A., Bartov, Y. and Kolodny, Y. (1992) Geology of the Hatrurim Formation (“Mottled Zone”) in the Hatrurim basin. Israel Journal of Earth Sciences, 40, 107124.Google Scholar
Burnham, C.W. (1959) Contact metamorphism of magnesian limestones at Crestmore, California. Bulletin of the Geological Society of America, 70, 879920.CrossRefGoogle Scholar
Burns, S., Hargreaves, J.S.J. and Hunter, S.M. (2007) On the use of methane as a reductant in the synthesis of transition metal phosphides. Catalysis Communications, 8, 931935.CrossRefGoogle Scholar
Buseck, P.R. (1969) Phosphide from meteorites: barringerite, a new iron–nickel mineral. Science, 165, 169171.CrossRefGoogle ScholarPubMed
Carlsson, B., Goelin, M. and Rundqvist, S. (1973) Determination of the homogeneity range and refinement of the crystal structure of Fe2P. Journal of Solid State Chemistry, 8, 5767.CrossRefGoogle Scholar
Clark, B.H. and Peacor, D.R. (1992) Pyrometamorphism and partial melting of shales during combustion metamorphism: mineralogical, textural and chemical effects. Contributions to Mineralogy and Petrology, 112, 558568.CrossRefGoogle Scholar
Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A. and Puschmann, H. (2009) OLEX2: a complete structure solution, refinement and analysis program, Journal of Applied Crystallography, 42, 339341.CrossRefGoogle Scholar
Fleurance, S., Cuney, M., Malartre, M. and Reyx, J. (2013) Origin of the extreme polymetallic enrichment (Cd, Cr, Mo, Ni, U, V, Zn) of the Late Cretaceous–Early Tertiary Belqa Group, central Jordan. Palaeogeography, Palaeoclimatology, Palaeoecology, 369, 201219.CrossRefGoogle Scholar
Galuskin, E.V., Gfeller, F., Galuskina, I.O., Pakhomova, A., Armbruster, T., Vapnik, Ye., Wlodyka, R., Dzierżanowski, P. and Murashko, M. (2015) New minerals with a modular structure derived from hatrurite from the pyrometamorphic Hatrurim Complex. Part II. Zadovite, BaCa6[(SiO4)(PO4)](PO4)2F and aradite, BaCa6[(SiO4)(VO4)](VO4)2F, from paralavas of the Hatrurim Basin, Negev Desert, Israel. Mineralogical Magazine, 79, 10731087.CrossRefGoogle Scholar
Galuskin, E., Galuskina, I., Vapnik, Ye. and Murashko, M. (2020) Molecular hydrogen in natural mayenite. Minerals, 10, 560.CrossRefGoogle Scholar
Gilat, A. (1994) Tectonic and associated mineralization activity, Southern Judea, Israel. Geological Survey of Israel, Report GSI/19/94, Jerusalem, 322 pp.Google Scholar
Grapes, R.H. (2011) Pyrometamorphism (2nd ed.). Springer Verlag, Berlin, 365 p.Google Scholar
Gross, H. (1977) The mineralogy of the Hatrurim Formation, Israel. Geological Survey of Israel Bulletin, 70, 180.Google Scholar
Guérin, R. and Sergent, M. (1977) Nouveaux arseniures et phosphures ternaires de molybdene ou de tungstene et d'elements 3d, de formule: M2-xMexX (M = élément 3d; Me = Mo, W; X = As, P). Materials Research Bulletin, 12, 381388.CrossRefGoogle Scholar
Ilani, S., Kronfeld, J. and Flexer, A. (1985) Iron-rich veins related to structural lineaments, and the search for base metals in Israel. Journal of Geochemical Exploration, 24, 197206.CrossRefGoogle Scholar
Issar, A., Eckstein, Y. and Bogoch, R. (1969) A possible thermal spring deposit in the Arad area, Israel. Israel Journal of Earth Sciences, 18, 1720.Google Scholar
Ivanov, A.V., Zolensky, M.E., Saito, A., Ohsumi, K., MacPherson, G.J., Yang, S.V., Kononkova, N.N. and Mikouchi, T. (2000) Florenskyite, FeTiP, a new phosphide from the Kaidun meteorite, American Mineralogist, 85, 10821086.CrossRefGoogle Scholar
Juroszek, R., Krüger, B., Galuskina, I., Krüger, H., Vapnik, Ye. and Galuskin, E. (2020) Siwaqaite, Ca6Al2(CrO4)3(OH)12⋅26H2O, a new mineral of the ettringite group from the pyrometamorphic Daba-Siwaqa complex, Jordan. American Mineralogist, 105, 409421.CrossRefGoogle Scholar
Khoury, H.N. (2020) High- and low-temperature mineral phases from the pyrometamorphic rocks, Jordan. Arabian Journal of Geosciences, 13, 734.CrossRefGoogle Scholar
Kumar, S., Krishnamurthy, A., Bipin, K., Srivastava, K., Daa, A. and Paranjpe, S. (2004) Magnetization and neutron diffraction studies on FeCrP. Pramana, 63, 199205.CrossRefGoogle Scholar
Ma, C., Beckett, J.R. and Rossman, G.R. (2014) Monipite, MoNiP, a new phosphide mineral in a Ca-Al-rich inclusion from the Allende meteorite. American Mineralogist, 99, 198205.CrossRefGoogle Scholar
Murashko, M.N., Chukanov, N.V., Mukhanova, A.A., Vapnik, E., Britvin, S.N., Polekhovsky, Y.S. and Ivakin, Y.D. (2011) Barioferrite BaFe12O19: A new mineral species of the magnetoplumbite group from the Haturim Formation in Israel. Geology of Ore Deposits, 53, 558563.CrossRefGoogle Scholar
Murashko, M.N., Vapnik, Y., Polekhovsky, Y.P., Shilovskikh, V.V., Zaitsev, A.M., Vereshchagin, O.S. and Britvin, S.N. (2019) Nickolayite, IMA 2018-126. CNMNC Newsletter No. 47, February 2019, page 146. Mineralogical Magazine, 83, 143147.Google Scholar
Novikov, I., Vapnik, Ye. and Safonova, I. (2013) Mud volcano origin of the Mottled Zone, Southern Levant. Geoscience Frontiers, 4, 597619.CrossRefGoogle Scholar
Oliynyk, A.O., Lomnytska, Y.F., Dzevenko, M.V., Stoyko, S.S. and Mar, A. (2013) Phase equilibria in the Mo–Fe–P System at 800 °C and structure of ternary phosphide (Mo1–xFex)3P (0.10 ≤ x ≤ 0.15). Inorganic Chemistry, 52, 983991.CrossRefGoogle Scholar
Pasero, M. (2022) The New IMA List of Minerals. International Mineralogical Association, Commission on New Minerals Nomenclature and Classification (IMA-CNMNC), http://cnmnc.main.jp/.Google Scholar
Pauling, L. (1960) The Nature of the Chemical Bond, 3rd ed., Cornell University Press: Ithaca, New York.Google Scholar
Reverdatto, V.V. (1970) Pyrometamorphism of limestones and the temperature of basaltic magmas. Lithos, 3, 135143.CrossRefGoogle Scholar
Rigaku Oxford Diffraction (2021) CrysAlisPro, Data Collection and Data Reduction GUI. Rigaku Corporation, Tokyo, Japan.Google Scholar
Rundqvist, S. and Nawapong, P.C. (1966) The crystal structure of ZrFeP and related compounds. Acta Chemica Scandinavica, 20, 22502254.CrossRefGoogle Scholar
Ryb, U., Erel, Y., Matthews, A., Avni, Y., Gordon, G.W. and Anbar, A.D. (2009) Large molybdenum isotope variations trace subsurface fluid migration along the Dead Sea transform. Geology, 37, 463466.CrossRefGoogle Scholar
Sharygin, V.V., Sokol, E.V. and Vapnik, Y. (2008) Minerals of the pseudobinary perovskite-brownmillerite series from combustion metamorphic larnite rocks of the Hatrurim Formation (Israel). Russian Geology and Geophysics, 49, 709726.CrossRefGoogle Scholar
Sharygin, V.V., Britvin, S.N., Kaminsky, F.V., Wirth, R., Nigmatulina, E.N., Yakovlev, G.A., Novoselov, K.A. and Murashko, M.N. (2021) Ellinaite, CaCr2O4, a new natural post-spinel oxide from Hatrurim Basin, Israel, and Juína kimberlite field, Brazil. European Journal of Mineralogy, 33, 727742.CrossRefGoogle Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Sokol, E.V., Kokh, S.N., Sharygin, V.V., Danilovsky, V.A., Seryotkin, Y.V., Liferovich, R., Deviatiiarova, A.S., Nigmatulina, E.N. and Karmanov, N.S. (2019) Mineralogical diversity of Ca2SiO4-bearing combustion metamorphic rocks in the Hatrurim Basin: implications for storage and partitioning of elements in oil shale clinkering. Minerals, 9, 465.CrossRefGoogle Scholar
Sokol, E.V., Kokh, S.N., Seryotkin, Yu.V., Deviatiiarova, A.S., Goryainov, S.V., Sharygin, V.V., Khoury, H.N., Karmanov, N.S., Danilovsky, V.A. and Artemyev, D.A. (2020) Ultrahigh-temperature sphalerite from Zn-Cd-Se-rich combustion metamorphic marbles, Daba complex, Central Jordan: Paragenesis, chemistry, and structure. Minerals, 10, 822.CrossRefGoogle Scholar
Souza, Z.S., Wang, C., Jin, Z-M., Li, J-W., Yang, J., Botelho, N.F., Viana, R.R., Santos, L., Liu, P.-L. and Li, W. (2019) Pyrometamorphic aureoles of Cretaceous sandstones and shales by Cenozoic basic intrusions, NE Brazil: Petrographic, textural, chemical and experimental approaches, Lithos, 326–327, 90109.CrossRefGoogle Scholar
Tarkian, M., Krstic, S., Klaska, K.-H. and Ließmann, W. (1997) Rhodarsenide, (Rh,Pd)2As, a new mineral. European Journal of Mineralogy, 9, 13211325.CrossRefGoogle Scholar
Vapnik, Ye., Sharygin, V., Sokol, E. and Shagam, R. (2007) Paralavas in a combustion metamorphic complex, Hatrurim Basin, Israel. GSA Reviews in Engineering Geology, 18, 33153.Google Scholar
Zolensky, M.E., Gounelle, M., Mikouchi, T., Ohsumi, K., Le, L., Hagiya, K. and Tachikawa, O. (2008) Andreyivanovite: a second new phosphide from the Kaidun meteorite, American Mineralogist, 93, 12951299.CrossRefGoogle Scholar
Supplementary material: File

Murashko et al. supplementary material

Murashko et al. supplementary material 1

Download Murashko et al. supplementary material(File)
File 234.2 KB
Supplementary material: PDF

Murashko et al. supplementary material

Murashko et al. supplementary material 2

Download Murashko et al. supplementary material(PDF)
PDF 178.2 KB