Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T01:45:18.708Z Has data issue: false hasContentIssue false

New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XVII. Paraberzeliite, NaCaCaMg2(AsO4)3, an alluaudite-group member dimorphous with berzeliite

Published online by Cambridge University Press:  12 January 2022

Igor V. Pekov*
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Natalia N. Koshlyakova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Dmitry I. Belakovskiy
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Marina F. Vigasina
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Natalia V. Zubkova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Atali A. Agakhanov
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Sergey N. Britvin
Affiliation:
St. Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia
Evgeny G. Sidorov
Affiliation:
Institute of Volcanology and Seismology, Far Eastern Branch of Russian Academy of Sciences, Piip Boulevard 9, 683006 Petropavlovsk-Kamchatsky, Russia
Dmitry Yu. Pushcharovsky
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
*
*Author for correspondence: Igor V. Pekov, Email: [email protected]

Abstract

The new alluaudite-group mineral paraberzeliite was found in the Arsenatnaya fumarole, Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. In the deepest zone of Arsenatnaya, paraberzeliite (holotype) is associated with anhydrite, diopside, hematite, svabite, berzeliite, schäferite, calciojohillerite, magnesioferrite, ludwigite, fluorapatite, powellite, baryte, and rhabdoborite-group and aphthitalite-group members. In the middle zone of the fumarole, paraberzeliite occurs with hematite, calciojohillerite, badalovite, johillerite, nickenichite, tilasite, svabite, fluorophlogopite, sanidine, cassiterite, anhydrite, metathénardite and belomarinaite. Paraberzeliite forms prismatic crystals up to 0.2 mm × 0.2 mm × 1 mm often occurring in open-work aggregates. It is transparent, brown (from light to dark brown, sometimes with purple or red hue) or green (from pale greenish to yellow–green). The mineral is brittle, cleavage was not observed. The Mohs hardness is 3½. Dcalc is 3.811 g cm–3. Paraberzeliite is optically biaxial (+), α = 1.718(4), β = 1.728(4), γ = 1.742(4) and 2Vmeas. = 85(5)°. The chemical composition (wt.%, electron-microprobe; holotype) is: Na2O 6.43, CaO 16.65, MgO 11.64, MnO 1.65, CuO 0.06, Fe2O3 2.45, V2O5 1.10, As2O5 59.46, total 99.44. The calculated empirical formula based on 12 O atoms per formula unit is (Na1.20Ca1.71Mg1.66Mn0.13Fe3+0.18)Σ4.88(As2.98V0.07)Σ3.05O12. Paraberzeliite is monoclinic, C2/c, a = 12.3143(7), b = 13.0679(5), c = 6.7717(4) Å, β = 113.657(7)°, V = 998.14(10) Å3 and Z = 4. The crystal structure was solved from single-crystal X-ray diffraction data, R = 0.0349. Paraberzeliite is isostructural with other alluaudite-group minerals. Its simplified crystal chemical formula is A(1)CaA(2)'NaM(1)CaM(2)Mg2(TAsO4)3. The idealised formula is NaCa2Mg2(AsO4)3, or, according to the actual nomenclature of alluaudite-group arsenates, NaCaCaMg2(AsO4)3. The name paraberzeliite reflects the dimorphism of this alluaudite-group mineral with the arsenate garnet berzeliite, ideally (Ca2Na)Mg2(AsO4)3.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Deceased 20 March 2021

Associate Editor: Ian T. Graham

References

Agilent Technologies (2014) CrysAlisPro Software system, version 1.171.37.35. Agilent Technologies UK Ltd, Oxford, UK.Google Scholar
Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (2000) Handbook of Mineralogy. IV. Arsenates, Phosphates, Vanadates. Mineral Data Publishing, Tucson.Google Scholar
Brese, N.E. and ÒKeeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.10.1107/S0108768190011041CrossRefGoogle Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 146(3), 104107 [in Russian].Google Scholar
Ðorðevic, T., Wittwer, A. and Krivovichev, S.V. (2015). Three new alluaudite-like protonated arsenates: NaMg3(AsO4)(AsO3OH)2, NaZn3(AsO4)(AsO3OH)2 and Na(Na0.6Zn0.4)Zn2(H0.6AsO4)(AsO3OH)2. European Journal of Mineralogy, 27, 559573.10.1127/ejm/2015/0027-2458CrossRefGoogle Scholar
Ercit, T.S. (1993) Caryinite revisited. Mineralogical Magazine, 57, 721727.10.1180/minmag.1993.057.389.16CrossRefGoogle Scholar
Grew, E.S., Locock, A.J., Mills, S.J., Galuskina, I.O., Galuskin, E.V. and Hålenius, U. (2013) Nomenclature of the garnet supergroup. American Mineralogist, 98, 785811.10.2138/am.2013.4201CrossRefGoogle Scholar
Hatert, F. (2019) A new nomenclature scheme for the alluaudite supergroup. European Journal of Mineralogy, 31, 807822.10.1127/ejm/2019/0031-2874CrossRefGoogle Scholar
Hawthorne, F.C. (1976) Refinement of the crystal structure of berzeliite. Acta Crystallographica, B32, 15811583.10.1107/S0567740876005888CrossRefGoogle Scholar
Holtstam, D. and Langhof, J. (Editors) (1999) Långban: The Mines, Their Minerals, Geology and Explorers. Raster Förlag, Stockholm.Google Scholar
Khorari, S., Rulmont, A. and Tarte, P. (1997). The arsenates NaCa2M2+2(AsO4)3 (M2+ = Mg, Ni, Co): influence of cationic substitutions on the garnet–alluaudite polymorphism. Journal of Solid State Chemistry, 131, 290297.10.1006/jssc.1997.7379CrossRefGoogle Scholar
Koshlyakova, N.N., Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Turchkova, A.G., Kartashov, P.M., Sidorov, E.G. and Pushcharovsky, D.Yu. (2020) A new solid solution with garnet structure: The berzeliite–schäferite isomorphous series from fumarole exhalations of the Tolbachik volcano, Kamchatka. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 149(6), 6984 [in Russian].Google Scholar
Krivovichev, S.V., Vergasova, L.P., Filatov, S.K., Rybin, D.S., Britvin, S.N. and Ananiev, V.V. (2013) Hatertite, Na2(Ca,Na)(Fe3+,Cu)2(AsO4)3, a new alluaudite-group mineral from Tolbachik fumaroles, Kamchatka peninsula, Russia. European Journal of Mineralogy, 25, 683691.10.1127/0935-1221/2013/0025-2311CrossRefGoogle Scholar
Nakamoto, K. (1986) Infrared and Raman Spectra of Inorganic and Coordination Compounds. John Wiley & Sons, New York.Google Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Lykova, I.S., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2014a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. I. Yurmarinite, Na7(Fe3+,Mg,Cu)4(AsO4)6. Mineralogical Magazine, 78, 905917.10.1180/minmag.2014.078.4.10CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D. Yu. (2014b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. II. Ericlaxmanite and kozyrevskite, two natural modifications of Cu4O(AsO4)2. Mineralogical Magazine, 78, 15271543.Google Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2015a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. III. Popovite, Cu5O2(AsO4)2. Mineralogical Magazine, 79, 133143.10.1180/minmag.2015.079.1.11CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Belakovskiy, D.I., Yapaskurt, V.O., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2015b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. IV. Shchurovskyite, K2CaCu6O2(AsO4)4, and dmisokolovite, K3Cu5AlO2(AsO4)4. Mineralogical Magazine, 79, 17371753.10.1180/minmag.2015.079.7.02CrossRefGoogle Scholar
Pekov, I.V., Yapaskurt, V.O., Britvin, S.N., Zubkova, N.V., Vigasina, M.F. and Sidorov, E.G. (2016a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. V. Katiarsite, KTiO(AsO4). Mineralogical Magazine, 80, 639646.10.1180/minmag.2016.080.007CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Polekhovsky, Yu.S., Vigasina, M.F., Belakovskiy, D.I., Britvin, S.N., Sidorov, E.G. and Pushcharovsky, D.Yu. (2016b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VI. Melanarsite, K3Cu7Fe3+O4(AsO4)4. Mineralogical Magazine, 80, 855867.10.1180/minmag.2016.080.027CrossRefGoogle Scholar
Pekov, I.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Zubkova, N.V. and Sidorov, E.G. (2017) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VII. Pharmazincite, KZnAsO4. Mineralogical Magazine, 81, 10011008.10.1180/minmag.2016.080.146CrossRefGoogle Scholar
Pekov, I.V., Koshlyakova, N.N., Belakovskiy, D.I., Vigasina, M.F., Zubkova, N.V., Agakhanov, A.A., Britvin, S.N., Sidorov, E.G. and Pushcharovsky, D.Y. (2018a) Paraberzeliite, IMA 2018-001. CNMNC Newsletter No 43, June 2018, page 780. Mineralogical Magazine, 82, 779785.Google Scholar
Pekov, I.V., Koshlyakova, N.N., Zubkova, N.V., Lykova, I.S., Britvin, S.N., Yapaskurt, V.O., Agakhanov, A.A., Shchipalkina, N.V., Turchkova, A.G. and Sidorov, E.G. (2018b) Fumarolic arsenates – a special type of arsenic mineralization. European Journal of Mineralogy, 30, 305322.10.1127/ejm/2018/0030-2718CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Yapaskurt, V.O., Chukanov, N.V., Belakovskiy, D.I., Sidorov, E.G. and Pushcharovsky, D.Yu. (2018c) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VIII. Arsenowagnerite, Mg2(AsO4)F. Mineralogical Magazine, 82, 877888.10.1180/minmag.2017.081.067CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Belakovskiy, D.I., Vigasina, M.F., Yapaskurt, V.O., Sidorov, E.G., Britvin, S.N. and Pushcharovsky, D.Y. (2019a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. IX. Arsenatrotitanite, NaTiO(AsO4). Mineralogical Magazine, 83, 453458.10.1180/mgm.2018.134CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Ksenofontov, D.A., Pautov, L.A., Sidorov, E.G., Britvin, S.N., Vigasina, M.F. and Pushcharovsky, D.Yu. (2019b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. X. Edtollite, K2NaCu5Fe3+O2(AsO4)4, and alumoedtollite, K2NaCu5AlO2(AsO4)4. Mineralogical Magazine, 83, 485495.10.1180/mgm.2018.155CrossRefGoogle Scholar
Pekov, I.V., Lykova, I.S., Yapaskurt, V.O., Belakovskiy, D.I., Turchkova, A.G., Britvin, S.N., Sidorov, E.G. and Scheidl, K.S. (2019c) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XI. Anatolyite, Na6(Ca,Na)(Mg,Fe3+)3Al(AsO4)6. Mineralogical Magazine, 83, 633638.10.1180/mgm.2019.11CrossRefGoogle Scholar
Pekov, I.V., Lykova, I.S., Agakhanov, A.A., Belakovskiy, D.I., Vigasina, M.F., Britvin, S.N., Turchkova, A.G., Sidorov, E.G. and Scheidl, K.S. (2019d) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XII. Zubkovaite, Ca3Cu3(AsO4)4. Mineralogical Magazine, 83, 879886.10.1180/mgm.2019.33CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Koshlyakova, N.N., Agakhanov, A.A., Belakovskiy, D.I., Vigasina, M.F., Yapaskurt, V.O., Britvin, S.N., Turchkova, A.G., Sidorov, E.G. and Pushcharovsky, D.Y. (2020a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XIII. Pansnerite, K3Na3Fe3+6(AsO4)8. Mineralogical Magazine, 84, 143151.10.1180/mgm.2019.48CrossRefGoogle Scholar
Pekov, I.V., Koshlyakova, N.N., Agakhanov, A.A., Zubkova, N.V., Belakovskiy, D.I., Vigasina, M.F., Turchkova, A.G., Sidorov, E.G. and Pushcharovsky, D.Yu. (2020b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XIV. Badalovite, NaNaMg(MgFe3+)(AsO4)3, a member of the alluaudite group. Mineralogical Magazine, 84, 616622.10.1180/mgm.2020.43CrossRefGoogle Scholar
Pekov, I.V., Koshlyakova, N.N., Agakhanov, A.A., Zubkova, N.V., Belakovskiy, D.I., Vigasina, M.F., Turchkova, A.G., Sidorov, E.G., Pushcharovsky, D.Yu. (2021a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XV. Calciojohillerite, NaCaMgMg2(AsO4)3, a member of the alluaudite group. Mineralogical Magazine, 85, 215223.10.1180/mgm.2021.2CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Britvin, S.N., Turchkova, A.G., Sidorov, E.G. and Pushcharovsky, D.Yu. (2021b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XVI. Yurgensonite, K2SnTiO2(AsO4)2, the first natural tin arsenate, and the katiarsite–yurgensonite isomorphous series. Mineralogical Magazine, 85, 698707.10.1180/mgm.2021.47CrossRefGoogle Scholar
Shchipalkina, N.V., Pekov, I.V., Koshlyakova, N.N., Britvin, S.N., Zubkova, N.V., Varlamov, D.A. and Sidorov, E.G. (2020) Unusual silicate mineralization in fumarolic sublimates of the Tolbachik volcano, Kamchatka, Russia – Part 1: Neso-, cyclo-, ino- and phyllosilicates. European Journal of Mineralogy, 32, 101119.10.5194/ejm-32-101-2020CrossRefGoogle Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Symonds, R.B. and Reed, M.H. (1993) Calculation of multicomponent chemical equilibria in gas-solid-liquid systems: calculation methods, thermochemical data, and applications to studies of high-temperature volcanic gases with examples from Mount St. Helens. American Journal of Science, 293, 758864.10.2475/ajs.293.8.758CrossRefGoogle Scholar
Tait, K.T. and Hawthorne, F.C. (2003) Refinement of the crystal structure of arseniopleite: confirmation of its status as a valid species. The Canadian Mineralogist, 41, 7177.10.2113/gscanmin.41.1.71CrossRefGoogle Scholar
Supplementary material: File

Pekov et al. supplementary material

Pekov et al. supplementary material

Download Pekov et al. supplementary material(File)
File 271 KB