Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-27T18:52:12.044Z Has data issue: false hasContentIssue false

New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XIII. Pansnerite, K3Na3Fe3+6(AsO4)8

Published online by Cambridge University Press:  30 July 2019

Igor V. Pekov*
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991Moscow, Russia
Natalia V. Zubkova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991Moscow, Russia
Natalia N. Koshlyakova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991Moscow, Russia
Atali A. Agakhanov
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071Moscow, Russia
Dmitry I. Belakovskiy
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071Moscow, Russia
Marina F. Vigasina
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991Moscow, Russia
Vasiliy O. Yapaskurt
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991Moscow, Russia
Sergey N. Britvin
Affiliation:
Dept. of Crystallography, St Petersburg State University, University Embankment 7/9, 199034St Petersburg, Russia
Anna G. Turchkova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991Moscow, Russia
Evgeny G. Sidorov
Affiliation:
Institute of Volcanology and Seismology, Far Eastern Branch of Russian Academy of Sciences, Piip Boulevard 9, 683006Petropavlovsk-Kamchatsky, Russia
Dmitry Y. Pushcharovsky
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991Moscow, Russia
*
*Author for correspondence: Igor V. Pekov, Email: [email protected]

Abstract

The new mineral pansnerite, ideally K3Na3Fe3+6(AsO4)8, was found in the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with aphthitalite, hematite, sanidine, badalovite, khrenovite, achyrophanite, arsenatrotitanite, ozerovaite, tilasite, calciojohillerite, johillerite, nickenichite, svabite, katiarsite, yurmarinite, anhydrite, rutile, cassiterite and pseudobrookite. Pansnerite forms tabular to lamellar (flattened on {010}), usually pseudo-hexagonal crystals up to 0.2 mm × 0.7 mm × 1 mm and crystal clusters up to 2 mm across. It is transparent to translucent, light green, pale greenish, yellowish–greenish or yellowish, with vitreous lustre. The mineral is brittle, with perfect {010} cleavage. The Mohs’ hardness is ca 3. Dcalc is 3.596 g cm–3. Pansnerite is optically biaxial (–), α = 1.702(4), β = 1.713(4), γ = 1.717(4), 2Vmeas = 45(10)° and 2Vcalc = 62°. Chemical composition (holotype, wt.%, electron microprobe data) is: Na2O 6.39, K2O 8.52, CaO 0.08, MgO 0.08, MnO 0.02, NiO 0.02, CuO 1.35, ZnO 0.34, Al2O3 7.35, Cr2O3 0.04, Fe2O3 16.72, SiO2 0.16, P2O5 0.22, V2O5 0.09, As2O5 57.76, SO3 0.04, total 99.20. The empirical formula based on 32 O apfu is K2.86Na3.26Ca0.02(Fe3+3.31Al2.28Cu0.27Zn0.07Mg0.03Cr0.01)Σ5.97(As7.95P0.05Si0.04V0.02S0.01)Σ8.06O32. Pansnerite is orthorhombic, Cmce, a = 10.7372(3), b = 20.8367(8), c = 6.47335(15) Å, V = 1448.27(7) Å3 and Z = 2. The strongest reflections of the X-ray powder diffraction pattern [d,Å(I)(hkl)] are: 10.49(100)(020), 5.380(88)(111), 4.793(65)(220), 3.105(46)(311, 002), 3.079(32)(112, 061), 2.932(35)(260), 2.783(65)(202) and 2.694(52)(400, 222). The crystal structure was solved from single-crystal X-ray diffraction data, R1 = 2.82%. The structure is based on heteropolyhedral layers formed by MO6 octahedra (M = Fe3+ and Al) sharing common vertices and connected by AsO4 tetrahedra. Na+ and K+ cations are located in the interlayer space. The mineral is named in honour of the German–Russian mineralogist and geographer Lavrentiy Ivanovich Pansner (1777–1851). Pansnerite forms a solid-solution series with the isotypic mineral ozerovaite, ideally KNa2Al3(AsO4)4.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Michael Rumsey

References

Agilent Technologies (2014) CrysAlisPro Software system, version 1.171.37.35. Agilent Technologies UK Ltd, Oxford, UK.Google Scholar
Ben Yahia, H., Nilges, T., Rodewald, U.Ch. and Pöttgen, R. (2010) New arsenates (V) NaKAl2O[AsO4]2 and Na2KAl3[AsO4]4. Materials Research Bulletin, 45, 20172023.CrossRefGoogle Scholar
Bouhassine, M.A. and Boughzala, H. (2014) The aluminoarsenate Na1.67K1.33Al3(AsO4)4. Acta Crystallographica, E70, i6.Google Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 146, 104107 [in Russian].Google Scholar
Fedotov, S.A. and Markhinin, Y.K. (editors)(1983) The Great Tolbachik Fissure Eruption. Cambridge University Press, New York, 341 pp.Google Scholar
Friaa, B.B., Boughzala, H. and Jouini, T. (2003) Tripotassium trichromium (III) tetraarsenate K3Cr3(AsO4)4: synthesis, structural study, IR spectroscopy characterization and ionic behavior. Journal of Solid State Chemistry, 173, 273279.CrossRefGoogle Scholar
Gagné, O.C. and Hawthorne, F.C. (2015) Comprehensive derivation of bond–valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Haj Abdallah, A. and Haddad, A. (2012) The aluminoarsenate K1.8Sr0.6Al3(AsO4)4. Acta Crystallographica, E68, i29.Google Scholar
Kouass, S. and Boughzala, H. (2006) Tripotassium Trichrome (III) Tetraphosphate K3Cr3(PO4)4: Synthèse, Étude Structurale, Caractérisation et Conductivité Ionique. Phosphorus, Sulfur, and Silicon and the Related Elements, 181, 2641–265.CrossRefGoogle Scholar
Lajmi, B., Hidouri, M., Rzeigui, M. and Ben Amara, M. (2002) Reinvestigation of the binary diagram Na3PO4 – FePO4 and crystal structure of a new iron phosphate Na3Fe3(PO4)4. Materials Research Bulletin, 37, 24072416.CrossRefGoogle Scholar
Lii, K.-H. (1995) K3Fe3(PO4)4·H2O: an iron(III) phosphate with a layer structure. European Journal of Solid State and Inorganic Chemistry, 32, 917926.Google Scholar
Ouerfelli, N., Zid, M.F. and Jouini, T. (2005) Composé à charpente bidimensionnelle K3Fe3(AsO4)4. Acta Crystallographica, E61, i67i69.Google Scholar
Ouerfelli, N., Ben Smida, Y. and Zid, M.F. (2015) Synthesis, crystal structure and electrical properties of a new iron arsenate Na2.77K1.52Fe2.57(AsO4)4. Journal of Alloys and Compounds, 651, 616622.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Lykova, I.S., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2014 a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. I. Yurmarinite, Na7(Fe3+,Mg,Cu)4(AsO4)6. Mineralogical Magazine, 78, 905917.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2014 b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. II. Ericlaxmanite and kozyrevskite, two natural modifications of Cu4O(AsO4)2. Mineralogical Magazine, 78, 15271543.Google Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2015 a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. III. Popovite, Cu5O2(AsO4)2. Mineralogical Magazine, 79, 133143.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Belakovskiy, D.I., Yapaskurt, V.O., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2015 b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. IV. Shchurovskyite, K2CaCu6O2(AsO4)4, and dmisokolovite, K3Cu5AlO2(AsO4)4. Mineralogical Magazine, 79, 17371753.CrossRefGoogle Scholar
Pekov, I.V., Yapaskurt, V.O., Britvin, S.N., Zubkova, N.V., Vigasina, M.F. and Sidorov, E.G. (2016 a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. V. Katiarsite, KTiO(AsO4). Mineralogical Magazine, 80, 639646.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Polekhovsky, Yu.S., Vigasina, M.F., Belakovskiy, D.I., Britvin, S.N., Sidorov, E.G. and Pushcharovsky, D.Yu. (2016 b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VI. Melanarsite, K3Cu7Fe3+O4(AsO4)4. Mineralogical Magazine, 80, 855867.CrossRefGoogle Scholar
Pekov, I.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Zubkova, N.V. and Sidorov, E.G. (2017 a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VII. Pharmazincite, KZnAsO4. Mineralogical Magazine, 81, 10011008.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Koshlyakova, N.N., Belakovskiy, D.I., Vigasina, M.F., Yapaskurt, V.O., Agakhanov, A.A., Britvin, S.N., Turchkova, A.G., Sidorov, E.G. and Pushcharovsky, D.Y. (2017 b) Pansnerite, IMA 2016-103. CNMNC Newsletter No. 36, April 2017, page 406; Mineralogical Magazine, 81, 403409.Google Scholar
Pekov, I.V., Koshlyakova, N.N., Zubkova, N.V., Lykova, I.S., Britvin, S.N., Yapaskurt, V.O., Agakhanov, A.A., Shchipalkina, N.V., Turchkova, A.G. and Sidorov, E.G. (2018 a) Fumarolic arsenates – a special type of arsenic mineralization. European Journal of Mineralogy, 30, 305322.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Yapaskurt, V.O., Chukanov, N.V., Belakovskiy, D.I., Sidorov, E.G. and Pushcharovsky, D.Yu. (2018 b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VIII. Arsenowagnerite, Mg2(AsO4)F. Mineralogical Magazine, 82, 877888.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Belakovskiy, D.I., Vigasina, M.F., Yapaskurt, V.O., Sidorov, E.G., Britvin, S.N. and Pushcharovsky, D.Y. (2019 a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. IX. Arsenatrotitanite, NaTiO(AsO4). Mineralogical Magazine, 83, 453458.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Ksenofontov, D.A., Pautov, L.A., Sidorov, E.G., Britvin, S.N., Vigasina, M.F. and Pushcharovsky, D.Yu. (2019 b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. X. Edtollite, K2NaCu5Fe3+O2(AsO4)4, and alumoedtollite, K2NaCu5AlO2(AsO4)4. Mineralogical Magazine, 83, 485495.CrossRefGoogle Scholar
Pekov, I.V., Lykova, I.S., Yapaskurt, V.O., Belakovskiy, D.I., Turchkova, A.G., Britvin, S.N., Sidorov, E.G. and Scheidl, K.S. (2019 c) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XI. Anatolyite, Na6(Ca,Na)(Mg,Fe3+)3Al(AsO4)6. Mineralogical Magazine, 83, 633638.CrossRefGoogle Scholar
Pekov, I.V., Lykova, I.S., Agakhanov, A.A., Belakovskiy, D.I., Vigasina, M.F., Britvin, S.N., Turchkova, A.G., Sidorov, E.G. and Scheidl, K.S. (2019 d) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XII. Zubkovaite, Ca3Cu3(AsO4)4. Mineralogical Magazine, 83, 879886.CrossRefGoogle Scholar
Shablinskii, A.P., Filatov, S.K., Vergasova, L.P., Avdontseva, E.Yu., Moskaleva, S.V. and Povolotskiy, A.V. (2019) Ozerovaite, Na2KAl3(AsO4)4, new mineral species from Tolbachik volcano, Kamchatka peninsula, Russia. European Journal of Mineralogy, 31, 159166.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Schwendtner, K. and Kolitsch, U. (2007) Two new structure types: KFe3(AsO4)2(HAsO4)2 and K(H2O)M 3+(H1.5AsO4)2(H2AsO4) (M 3+ = Fe, Ga, In) – synthesis, crystal structure and spectroscopy. European Journal of Mineralogy, 19, 399409.CrossRefGoogle Scholar
Supplementary material: File

Pekov et al. supplementary material

Pekov et al. supplementary material

Download Pekov et al. supplementary material(File)
File 55.3 KB