Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T19:55:25.502Z Has data issue: false hasContentIssue false

New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. IX. Arsenatrotitanite, NaTiO(AsO4)

Published online by Cambridge University Press:  04 July 2018

Igor V. Pekov*
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Natalia V. Zubkova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Atali A. Agakhanov
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Dmitry I. Belakovskiy
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Marina F. Vigasina
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Vasiliy O. Yapaskurt
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Evgeny G. Sidorov
Affiliation:
Institute of Volcanology and Seismology, Far Eastern Branch of the Russian Academy of Sciences, Piip Boulevard 9, 683006 Petropavlovsk-Kamchatsky, Russia
Sergey N. Britvin
Affiliation:
Department of Crystallography, St Petersburg State University, University Embankment 7/9, 199034 St Petersburg, Russia
Dmitry Y. Pushcharovsky
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
*
*Author for correspondence: Igor Pekov, Email: [email protected]

Abstract

The new durangite-group mineral arsenatrotitanite, ideally NaTiO(AsO4), was found in the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with orthoclase, tenorite, hematite, johillerite, bradaczekite, badalovite, calciojohillerite, arsmirandite, tilasite, svabite, cassiterite, pseudobrookite, rutile, sylvite, halite, aphthitalite, langbeinite and anhydrite. Arsenatrotitanite occurs as prismatic, tabular, lamellar or acicular crystals up to 0.3 mm × 0.8 mm × 2 mm. They are separated or combined in open-work aggregates up to 2 mm across or interrupted crusts up to 2 mm × 5 mm in area and up to 0.3 mm thick. Arsenatrotitanite is transparent, brownish red to pale pinkish-reddish or almost colourless, with vitreous lustre. It is brittle and the Mohs’ hardness is ~5½. Cleavage is perfect on {110} and the fracture is stepped. Dcalc is 3.950 g cm–3. Arsenatrotitanite is optically biaxial (+), α = 1.825(5), β = 1.847(6), γ = 1.896(6) (589 nm) and 2Vmeas. = 70(5)°. Chemical composition (wt.%, electron-microprobe) is: Na2O 12.26, CaO 3.10, Al2O3 4.39, Fe2O3 9.57, TiO2 17.11, SnO2 1.03, As2O5 50.17, F 3.29, O = F –2.39, total 99.53. The empirical formula based on 5 (O + F) apfu is (Na0.91Ca0.13)Σ1.04(Ti0.49Fe3+0.27Al0.20Sn0.02)Σ0.98(As1.00O4.00)(O0.60F0.40). Arsenatrotitanite is monoclinic, C2/c, a = 6.6979(3), b = 8.7630(3), c = 7.1976(3) Å, β = 114.805(5)°, V = 383.48(3) Å3 and Z = 4. The strongest reflections of the powder X-ray diffraction (XRD) pattern [d,Å(I)(hkl)] are: 4.845(89)($\bar{1} {11}}$), 3.631(36)(021), 3.431(48)(111), 3.300(100)($\bar{1} {12}}$), 3.036(100)(200), 2.627(91)(130) and 2.615(57)(022). The crystal structure was solved from single-crystal XRD data with R = 1.76%. Arsenatrotitanite belongs to the titanite/durangite structure type. It is named as an arsenate of sodium (natrium in Latin) and titanium isostructural with titanite.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Juraj Majzlan

References

Agilent Technologies (2014) CrysAlisPro Software system, version 1.171.37.35. Agilent Technologies UK Ltd, Oxford, UK.Google Scholar
Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (1995) Handbook of Mineralogy. II. Silica, Silicates. Mineral Data Publishing, Tucson.Google Scholar
Back, M.E. (2018) Fleischer's Glossary of Mineral Species 2018. 12th edition. The Mineralogical Record Inc., Tucson.Google Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 146, 104107 [in Russian].Google Scholar
Churakov, S.V., Tkachenko, S.I., Korzhinskii, M.A., Bocharnikov, R.E. and Shmulovich, K.I. (2000) Evolution of composition of high-temperature fumarolic gases from Kudryavy volcano, Iturup, Kuril Islands: the thermodynamic modeling. Geochemistry International, 38, 436451.Google Scholar
Cooper, M.A. and Hawthorne, F.C. (1995) The crystal structure of maxwellite. Neues Jahrbuch für Mineralogie. Monatshefte, 97104.Google Scholar
Foord, E.E., Oakman, M.R. and Maxwell, C.H. (1985) Durangite from the Black Range, New Mexico, and new data on durangite from Durango and Cornwall. The Canadian Mineralogist, 23, 241246.Google Scholar
Foord, E.E., Hlava, P.F., Fitzpatrick, J.J., Erd, R.C. and Hinton, R.W. (1991) Maxwellite and squacreekite, two new minerals from the Black Range tin district, Catron County, New Mexico, U.S.A. Neues Jahrbuch für Mineralogie. Monatshefte, 363384.Google Scholar
Gagné, O.C. and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Lykova, I.S., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2014 a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. I. Yurmarinite, Na7(Fe3+,Mg,Cu)4(AsO4)6. Mineralogical Magazine, 78, 905917.Google Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2014 b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. II. Ericlaxmanite and kozyrevskite, two natural modifications of Cu4O(AsO4)2. Mineralogical Magazine, 78, 15271543.Google Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2015 a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. III. Popovite, Cu5O2(AsO4)2. Mineralogical Magazine, 79, 133143.Google Scholar
Pekov, I.V., Zubkova, N.V., Belakovskiy, D.I., Yapaskurt, V.O., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2015 b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. IV. Shchurovskyite, K2CaCu6O2(AsO4)4, and dmisokolovite, K3Cu5AlO2(AsO4)4. Mineralogical Magazine, 79, 17371753.Google Scholar
Pekov, I.V., Yapaskurt, V.O., Britvin, S.N., Zubkova, N.V., Vigasina, M.F. and Sidorov, E.G. (2016 a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. V. Katiarsite, KTiO(AsO4). Mineralogical Magazine, 80, 639646.Google Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Polekhovsky, Yu.S., Vigasina, M.F., Belakovskiy, D.I., Britvin, S.N., Sidorov, E.G. and Pushcharovsky, D.Yu. (2016 b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VI. Melanarsite, K3Cu7Fe3+O4(AsO4)4. Mineralogical Magazine, 80, 855867.Google Scholar
Pekov, I.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Zubkova, N.V. and Sidorov, E.G. (2017) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VII. Pharmazincite, KZnAsO4. Mineralogical Magazine, 81, 10011008.Google Scholar
Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Yapaskurt, V.O., Chukanov, N.V., Belakovskiy, D.I., Sidorov, E.G. and Pushcharovsky, D.Yu. (2018 a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VIII. Arsenowagnerite, Mg2(AsO4)F. Mineralogical Magazine, 82, 877888.Google Scholar
Pekov, I.V., Koshlyakova, N.N., Zubkova, N.V., Lykova, I.S., Britvin, S.N., Yapaskurt, V.O., Agakhanov, A.A., Shchipalkina, N.V., Turchkova, A.G. and Sidorov, E.G. (2018 b) Fumarolic arsenates – a special type of arsenic mineralization. European Journal of Mineralogy, 30, 305322.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.Google Scholar
Yahia, H.B., Rodewald, U.C. and Pöttgen, R. (2010) Salt flux crystal growth of the titanyl arsenate NaTiO(AsO4). Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 141, 495499.Google Scholar
Zelenski, M., Malik, N. and Taran, Yu. (2014) Emissions of trace elements during the 2012–2013 effusive eruption of Tolbachik volcano, Kamchatka: enrichment factors, partition coefficients and aerosol contribution. Journal of Volcanology and Geothermal Research, 285, 136149.Google Scholar
Supplementary material: File

Pekov et al. supplementary material

Pekov et al. supplementary material 1

Download Pekov et al. supplementary material(File)
File 14.6 KB