Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T19:50:07.807Z Has data issue: false hasContentIssue false

The nature of kerolite, its relation to talc and stevensite

Published online by Cambridge University Press:  05 July 2018

G. W. Brindley
Affiliation:
Department of Geosciences, The Pennsylvania State University, University Park, PA 16802, U.S.A.
David L. Bish
Affiliation:
Department of Geosciences, The Pennsylvania State University, University Park, PA 16802, U.S.A.
Hsien-Ming Wan
Affiliation:
Department of Geosciences, The Pennsylvania State University, University Park, PA 16802, U.S.A.

Summary

Kerolites from Goles Mountain (Yugoslavia), Wiry (Poland), Madison Co. (North Carolina), and Kremze (Czechoslovakia) are compared with talc and stevensite. Chemical analyses give a composition for kerolite near R3Si4O10(OH)2.nH2O with R mainly Mg and n about 0·8–1·2. Infra-red data and dehydration-rehydration experiments suggest that the additional water is partly surface-held hydrogen-bonded molecular water, lost up to about 300 °C and easily recoverable, and ‘water’ held as surface hydroxyls, lost at temperatures up to about 650 °C and less easily recoverable. The surface area of kerolite from North Carolina by nitrogen absorption measurements is 196 m2/g.

X-ray data show broad basal reflections, a basal spacing (after Lorentz-polarization correction) of about 9·6 Å and a crystallite size of about five structural layers, which is consistent with the large surface area. Two-dimensional hk bands indicate a randomly stacked layer structure with b ≈ 9·14 Å and a crystallite ‘diameter’ of about 150 Å. The basal spacing shows no expansion in water and no thermal contraction up to 500°C. A partial and irregular swelling with ethylene glycol is obtained only after prolonged cxposure (several weeks). In both respects, kerolites differ from stevensite. Kerolites come close to talc in structure and composition but differ in having a highly random layer arrangement, a slightly enlarged basal spacing, which could be due to misfit of layers caused by random stacking, and weaker interlayer bonding.

Kerolite is considered to be a useful varietal name for this talc-like mineral in agreement with the views of D'yakonov and of Maksimovic. It cannot be defined as serpentine + stevensite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Breithaupt, (A.), 1823. Volstandige Characteristik des Mineral-Systems. Atnoldischen Buchhandlung, Dresden.Google Scholar
Brindley, (G. W.), 1955. Am. Mineral. 40, 239.Google Scholar
Brindley, (G. W.) and Ertem, (G.), 1971. Clays Clay Miner. 19, 399.CrossRefGoogle Scholar
Brindley, (G. W.) and Hang, Pham Thi, 1973. Ibid. 21, 27.Google Scholar
D'yakonov, (Yu. S.), 1963a. Dokl. Akad. Nauk SSSR 148, 909. English trans. (Earth Science Series), 107.Google Scholar
D'yakonov, (Yu. S.), 1963b. Mineral. Sbornik Vses. Nauchn.—Issled. Geol. lnst., No. 3, 203.Google Scholar
Farmer, (V. C), 1974. The Layer Silicates. Ch. 15 in The Infrared Spectra of Minerals. Farmer, V. C. (editor), Mineralogical Society, London.CrossRefGoogle Scholar
Faust, (G. T.), 1966. Am. Mineral. 51, 279.Google Scholar
Faust, (G. T.), Hathaway, (J. C), and Millot, (G.), 1959. Ibid. 44, 342.Google Scholar
Faust, (G. T.), Hathaway, (J. C), and Murata, (K. J.), 1953. Ibid. 38, 973.Google Scholar
Fleischer, (M.), 1965. Ibid. 50, 2111.Google Scholar
Fleischer, (M.), 1975. Glossary of Mineral Species, pp. 16 and 46. U.S. Geol. Survey. Revised 1975, see pp. 21 and 62.Google Scholar
Gary, (M.), McAfee, (R.), and Wolf, (C. L.) (editors), 1972. Glossary of Geology, p. 116. American Geological Institute, Washington, D.C. Google Scholar
Giese, (R. F.), 1975. Clays Clay Miner. 23, 165.CrossRefGoogle Scholar
Imai, (N.), Otsuka, (R.), Nakamura, (T.), Tsunashima, (A.), and Sakamoto, (T.), 1973. Clay Sci. (Japan) 4, 175.Google Scholar
Maksimovic, (Z.), 1966. Proc. Internat. Clay Conf, Jerusalem, Israel, 1, 97.Google Scholar
Maksimovic, (Z.), 1973. Sixth Conf. Clay Mineral. Petrol. Praha, 1973, pp. 119.Google Scholar
Medlin, (J. H.), Suhr, (N. H.), and Bodkin, (J. B.), 1964. Atomic Abs. Newsletter, 8, 25.Google Scholar
Pecora, (W. T.), Hobbs, (S. W.), and Murata, (K. J.), 1949. Econ. Geol. 44, 13.CrossRefGoogle Scholar
Rayner, (J. H.) and Brown, (G.), 1973. Clays Clay Miner. 21, 103.CrossRefGoogle Scholar
Roberts, (W. L.), Rapp, (G. R. Jr.), and Weber, (J.), 1974. Encyclopedia of Minerals, p. 115. Van Nostrand Reinhold Co., New York.Google Scholar
Scholze, (H.), 1960a. Naturwiss. 47, 226.CrossRefGoogle Scholar
Scholze, (H.), 1960b. Glastech. Ber. 33, 33.Google Scholar
Slansky, (E.), 1955. Zap. Vses. Mineral. Obshch. 84, 43.Google Scholar
Stemple, (Irene S.), 1958. X-ray Diffraction Study of Talc. MS. Thesis, The Pennsylvania State University.Google Scholar
Stoch, (L.), 1974. Mineraly Haste. Wydawnictwa Geologiczne, Warszawa, Poland.Google Scholar
Uyeda, (R.), Hang, Pham Thi, and Brindley, (G. W.), 1973. Clays Clay Miner. 21, 41.CrossRefGoogle Scholar
Vitovskaya, (I. V.) and Berkhin, (S. L.), 1968. Kora Vyvetrivaniya, 10, 134.Google Scholar
Vitovskaya, (I. V.) and Berkhin, (S. L.), 1970. Ibid. 11, 26.Google Scholar
Warren, (B. E.), 1941. Phys. Rev. 59, 693.CrossRefGoogle Scholar