Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-24T08:19:00.520Z Has data issue: false hasContentIssue false

Nanoscale uranium-based cage clusters inspired by uranium mineralogy

Published online by Cambridge University Press:  05 July 2018

P. C. Burns*
Affiliation:
Department of Civil Engineering and Geological Sciences, Department of Chemistry and Biochemistry, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, USA
*

Abstract

Taking advantage of the bent uranyl-peroxide-uranyl interaction found in studtite, 26 nanoscale clusters have been synthesized using uranyl hexagonal bipyramids. Sixteen of these clusters are built from uranyl hexagonal bipyramids only. Eight contain pyrophosphate groups that bridge between uranyl polyhedra, and two contain oxalate groups that adopt a similar structural role. These clusters contain from 20 to 60 uranyl polyhedra and have diameters in the range ∼1.5 to 3 nm. All spontaneously selfassemble in aqueous solution under ambient conditions.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alekseev, E.V., Krivovichev, S.V., Malcherek, T. and Depmeier, W. (2007) One-dimensional array of twoand three-center cation-cation bonds in the structure of Li4[(UO2)10O10(Mo2O8)]. Inorganic Chemistry, 46, 84428444.CrossRefGoogle Scholar
Brinkman, G., Delado, O., Friedrichs, S., Lisken, S., Peeters, A. and Van Cleemput, N. (2010) MATCH. Communications in Mathematical and in Computer Chemistry, 63, 533552.Google Scholar
Burns, P.C. (1997) A new uranyl oxide hydrate sheet in vandendriesscheite: Implications for mineral paragenesis and the corrosion of spent nuclear fuel. American Mineralogist, 82, 11761186.CrossRefGoogle Scholar
Burns, P.C. (1999a) The crystal chemistry of uranium. Pp. 2390 in: Uranium: Mineralogy, Geochemistry, and the Environment (Burns, P.C. and Finch, R., editors). Reviews in Mineralogy, 38, Mineralogical Society of America, Washington, D.C. CrossRefGoogle Scholar
Burns, P.C. (1999b) A new complex sheet of uranyl polyhedra in the structure of wolsendorfite. American Mineralogist, 84, 16611673.CrossRefGoogle Scholar
Burns, P.C. (2000) A new uranyl phosphate chain in the structure of parsonsite. American Mineralogist, 85, 801805.CrossRefGoogle Scholar
Burns, P.C. (2001) A new uranyl sulphate chain in the structure of uranopilite. The Canadian Mineralogist, 39, 11391146.CrossRefGoogle Scholar
Burns, P.C. (2005) U6+ minerals and inorganic compounds: Insights into an expanded structural hierarchy of crystal structures. The Canadian Mineralogist, 43, 18391894.CrossRefGoogle Scholar
Burns, P.C. and Kubatko, K.A. (2003) Studtite, [(UO2)(O2)(H2O)2](H2O)2: The first structure of a peroxide mineral. American Mineralogist, 88, 11651168.CrossRefGoogle Scholar
Burns, P.C., Miller, M.L. and Ewing, R.C. (1996) U6+ minerals and inorganic phases: A comparison and hierarchy of crystal structures. The Canadian Mineralogist, 34, 845880.Google Scholar
Burns, P.C., Ewing, R.C. and Hawthorne, F.C. (1997) The crystal chemistry of hexavalent uranium: Polyhedron geometries, bond-valence parameters, and polymerization of polyhedra. The Canadian Mineralogist, 35, 15511570.Google Scholar
Burns, P.C., Kubatko, K.A., Sigmon, G., Fryer, B.J., Gagnon, J.E., Antonio, M.R. and Soderholm, L. (2005) Actinyl peroxide nanospheres. Angewandte Chemie - International Edition, 44, 21352139.CrossRefGoogle ScholarPubMed
Finch, R.J. and Murakami, T. (1999) Systematics and paragensis of uranium minerals. Pp. 91180 in: Uranium: Mineralogy, Geochemistry, and the Environment (Burns, P.C. and Finch, R., editors). Reviews in Mineralogy, 38, Mineralogical Society of America, Washington, D.C. CrossRefGoogle Scholar
Forbes, T.Z. and Burns, P.C. (2007) The role of cationcation interactions in a neptunyl chloride hydrate and topological aspects of neptunyl structural units. Journal of Solid State Chemistry, 180, 106112.CrossRefGoogle Scholar
Forbes, T.Z., Burns, P.C., Soderholm, L. and Skanthakumar, S. (2006) Crystal structures and magnetic properties of NaK3(NPO2)4(SO4)4(H2O)2 and NaNPO2SO4H2O: Cation-cation interactions in a neptunyl sulfate framework. Chemistry of Materials, 18, 16431649.CrossRefGoogle Scholar
Forbes, T.Z., Burns, P.C., Skanthakumar, S. and Soderholm, L. (2007) Synthesis, structure, and magnetism of NP2O5 . Journal of the American Chemical Society, 129, 27602761.CrossRefGoogle Scholar
Forbes, T.Z., McAlpin, J.G., Murphy, R. and Burns, P.C. (2008a) Metal-oxygen isopolyhedra assembled into fullerene topologies. Angewandte Chemie – International Edition, 47, 28242827.CrossRefGoogle ScholarPubMed
Forbes, T.Z., Wallace, C. and Burns, P.C. (2008b) Neptunyl compounds: Polyhedron geometries, bondvalence parameters, and structural hierarchy. The Canadian Mineralogist, 46, 16231645.CrossRefGoogle Scholar
Fowler, P. and Manolopoulos, D. (2006) An Atlas of Fullerenes, 2nd edition. P. 392. Dover Publications, Inc., Mineola, New York.Google Scholar
Hughes Kubatko, K.-A., Helean, K.B., Navrotsky, A. and Burns, P.C. (2003) Stability of peroxidecontaining uranyl minerals. Science, 302, 11911193.CrossRefGoogle Scholar
Jackson, J.M. and Burns, P.C. (2001) A re-evaluation of the structure of weeksite, a uranyl silicate framework mineral. The Canadian Mineralogist, 39, 187195.CrossRefGoogle Scholar
Krot, N.N. and Grigoriev, M.S. (2004) Cation-cation interaction in crystalline actinide compounds. Russian Chemical Reviews, 73, 89100.CrossRefGoogle Scholar
Kroto, H.W., Heath, J.R., Obrien, S.C., Curl, R.F. and Smalley, R.E. (1985) C-60 - buckminsterfullerene. Nature, 318, 162163.CrossRefGoogle Scholar
Kubatko, K.A. and Burns, P.C. (2006a) Cation-cation interactions in Sr5(UO2)2O(UO6)2O16(OH)6(H2O)6 and Cs(UO2)9U3O16(OH)5 . Inorganic Chemistry, 45, 1027710281.CrossRefGoogle Scholar
Kubatko, K.A. and Burns, P.C. (2006b) Expanding the crystal chemistry of actinyl peroxides: Open sheets of uranyl polyhedra in Na5[(UO2)3(O2)4(OH)3] (H2O)13 . Inorgankic Chemistry, 45, 60966098.CrossRefGoogle Scholar
Ling, J., Qiu, J., Sigmon, G., Ward, M., Szymanowski, J.E.S. and Burns, P.C. (2010a) Uranium pyrophosphate/ methylenediphosphonate polyoxometalate clusters. Journal of the American Chemical Society, 132, 1339513402.CrossRefGoogle Scholar
Ling, J., Wallace, C., Szymanowski, J.E.S. and Burns, P.C. (2010b) Hybrid uranium-oxalate fullerene topology cage clusters. Angewandte Chemie – International Edition, 49, 72717273.CrossRefGoogle Scholar
McNamara, B.B. (2002) Observation of studtite and metastudtite on spent fuel. Materials Research Society Proceedings, 757, 401.CrossRefGoogle Scholar
Miller, M.L., Finch, R.J., Burns, P.C. and Ewing, R.C. (1996) Description and classification of uranium oxide hydrate sheet anion topologies. Journal of Materials Research, 11, 30483056.CrossRefGoogle Scholar
Sigmon, G., Ling, J., Unruh, D.K., Moore-Shay, L., Ward, M., Weaver, B. and Burns, P.C. (2009a) Uranyl-peroxide interactions favor nano-cluster selfassembly. Journal of the American Chemical Society, 131, 1664816649.CrossRefGoogle Scholar
Sigmon, G.E., Unruh, D.K., Ling, J., Weaver, B., Ward, M., Pressprich, L., Simonetti, A. and Burns, P.C. (2009b) Symmetry versus minimal pentagonal adjacencies in uranium-based polyoxometalate fullerene topologies. Angewandte Chemie - Internatinoal Edition, 48, 27372740.CrossRefGoogle Scholar
Sigmon, G.E., Weaver, B., Kubatko, K.A. and Burns, P.C. (2009c) Crown and bowl-shaped clusters of uranyl polyhedra. Inorganic Chemistry, 48, 1090710909.CrossRefGoogle Scholar
Unruh, D.K., Burtner, A., Pressprich, L., Sigmon, G. and Burns, P.C. (2010) Uranyl peroxide closed clusters containing topological squares. Dalton Transactions, 39, 58075813.CrossRefGoogle ScholarPubMed
Vlaisavljevich, B., Gagliardi, L. and Burns, P.C. (2010) Understanding the structure and formation of uranyl peroxide nanoclusters by quantum chemical calculations. Journal of the American Chemical Society, 132, 1450314508.(DOI: 10.1021/ja104964x).CrossRefGoogle ScholarPubMed
Walenta, K. (1973) Studtite and its composition. American Mineralogist, 59, 166171.Google Scholar
Xie, S.Y., Gao, F., Lu, X., Huang, R.B., Wang, C.R., Zhang, X., Liu, M.L., Deng, S.L. and Zheng, L.S. (2004) Capturing the labile fullerene[50] as C50Cl10. Science, 304, 699699.CrossRefGoogle ScholarPubMed