Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T06:28:50.772Z Has data issue: false hasContentIssue false

A multimethodic approach for the characterization of manganiceladonite, a new member of the celadonite family from Cerchiara mine, Eastern Liguria, Italy

Published online by Cambridge University Press:  02 January 2018

G. O. Lepore*
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via G. La Pira 4, I-50121, Firenze, Italy
L. Bindi
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via G. La Pira 4, I-50121, Firenze, Italy
F. Di Benedetto
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via G. La Pira 4, I-50121, Firenze, Italy
E. Mugnaioli
Affiliation:
Dipartimento di Scienze Fisiche, della Terra e dell’Ambiente, Università di Siena, Via Laterina 8, I-53100, Siena, Italy Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127, Pisa, Italy
C. Viti
Affiliation:
Dipartimento di Scienze Fisiche, della Terra e dell’Ambiente, Università di Siena, Via Laterina 8, I-53100, Siena, Italy
A. Zanetti
Affiliation:
CNR, Istituto di Geoscienze e Georisorse, Università di Pavia, Via Ferrata 1, I-27100 Pavia, Italy
M. E. Ciriotti
Affiliation:
Associazione Micromineralogica Italiana, Via Gioconda 3, I-26100 Cremona, Italy
P. Bonazzi
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via G. La Pira 4, I-50121, Firenze, Italy
*

Abstract

In the manganesiferous ores associated with the metacherts of the ophiolitic sequences at the Cerchiara mine, Eastern Liguria (Italy), a new Mn-bearing mineral belonging to the mica group has been recently found and characterized. High resolution transmission electron microscopy and electron diffraction tomography studies confirm that the mineral belongs to the mica group. Unit-cell parameters from the powder diffraction pattern are: a = 5.149(1), b = 8.915(1), c = 10.304(1) Å, β = 102.03(1)°, space group C2 or C2/m. On the basis of the electron paramagnetic resonance spectroscopic results, the Mn4+ content represents a very subordinate fraction of the total Mn, the remaining occurring as Mn3+. The Raman spectrum clearly indicates the presence of OH groups in the structure. Laser-ablation inductively-coupled-plasma mass-spectrometry measurements assess the presence of considerable amounts of Li.

Assuming all Mn as Mn3+ and 22 negative charges, the empirical formula can be expressed as: (K0.830.17)(Mn1.143+Mg0.80Li0.20Fe0.023+)(Si3.89Al0.10)O10[(OH)1.92F0.08] with the sum of the octahedral cations indicating a 'transitional' character between a di- and a tri-octahedral structure. This formula corresponds ideally to the Mn3+ analogue of celadonite, thus expanding the range of solid solution in the celadonite family. The ideal end-member formula KMn3+MgSi4O10(OH)2 can be easily related to celadonite by the homovalent substitution VIMn3+VIFe3+. The mineral and its name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association, (IMA 2015-052).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Basso, R., Lucchetti, G., Zefiro, L. and Palenzona, A. (1993) Mozartite, CaMn(OH)SiO4, a new mineral species from the Cerchiara mine, northern Apennines, Italy. The Canadian Mineralogist, 31, 331336.CrossRefGoogle Scholar
Basso, R., Lucchetti, G., Zefiro, L. and Palenzona, A. (1997) Caoxite, Ca(H2O)3(C2O4), a new mineral from the Cerchiara mine, northern Appennines, Italy. Neues Jahrbuch für Mineralogie, Monatshefte, 8496.CrossRefGoogle Scholar
Basso, R., Lucchetti, G., Zefiro, L. and Palenzona, A. (2000) Cerchiaraite, a new natural Ba-Mn-mixedanion silicate chloride from the Cerchiara mine, northern Apennines, Italy. Neues Jahrbuch für Mineralogie, Monatshefte, 373-384.Google Scholar
Boggs, R.C. (1992) A manganese-rich miarolitic granite pegmatite assemblage from the Sawtooth batholith, South central Idaho, U.S.A. Abstracts: International Symposium ‘Lepidolite 200 ”, Nové Mesto na Morave/ Czechoslovakia, 29.8.-3.9.1992, 1516.Google Scholar
Bortolotti, M. and Lonardelli, I. (2013) ReX. Cell: a user-friendly program for powder diffraction indexing. Journal of Applied Crystallography, 46, 259261.CrossRefGoogle Scholar
Brigatti, M.F. and Guggenheim, S. (2002) Mica crystal chemistry and the influence of pressure, temperature, and solid solution on atomistic models. Pp. 1-97 in: Micas: Crystal Chemistry & Metamorphic Petrology (A. Mottana, F.P Sassi, J.B. Thompson, Jr. and S. Guggenheim, editors). Reviews in Mineralogy and Geochemistry, 46. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Brigatti, M.F., Malferrari, D., Laurora, A. and Elmi, C. (2011) Structure and mineralogy of layer silicates: recent perspectives and new trends. Layered mineral structures and their application in advanced technologies. EMU Notes in Mineralogy, 11, 171.Google Scholar
Cabella, R., Lucchetti, G., Palenzona, A., Quartieri, S. and Vezzalini, G. (1993) First occurrence of a Ba-dominant brewsterite: structural features. European Journal of Mineralogy, 5, 353360.CrossRefGoogle Scholar
Cabella, R., Lucchetti, G. and Marescotti, P. (1998) Mn-ores from Eastern Ligurian ophioltic sequences (“Diaspri di Monte Alpe” Formation, Northern Apennines, Italy). Trends in Mineralogy, 2, 117.Google Scholar
Černý, P., Chapman, R., Stane, J., Nová, M., Baadsgaard, H., Rieder, M., Kavalová, M. and Ottolini, L. (1995) Geochemical and structural evolution of micas in the Rožná and Dobrá Voda pegmatites, Czech Republic. Mineralogy and Petrology, 55, 177201.CrossRefGoogle Scholar
Di Leo, P., Pizzigallo, M.D.R., Ancona, V., Di Benedetto, F., Mesto, E., Schingaro, E. and Ventruti, G. (2012) Mechanochemical transformation of an organic ligand on mineral surfaces: The efficiency of birnessite in catechol degradation. Journal of Hazardous Materials, 201, 148154.CrossRefGoogle ScholarPubMed
Di Leo, P., Pizzigallo, M.D.R., Ancona, V., Di Benedetto, F., Mesto, E., Schingaro, E. and Ventruti, G. (2013) Mechanochemical degradation of pentachlorophenol onto birnessite. Journal of Hazardous Materials, 244, 303310.CrossRefGoogle ScholarPubMed
Du Bray, E.A. (1994) Compositions of micas in peraluminous granitoids of the eastern Arabian Shield. Contributions to Mineralogy and Petrology, 116, 381397.CrossRefGoogle Scholar
Eggleton, R.A. and Ashley, P.M. (1989) Norrishite, a new manganese mica, K(Mn23þLi) Si4O12, from the Hoskins Mine, New South Wales, Australia. American Mineralogist, 74, 13601367.Google Scholar
Foord, E.E., Černý, P., Jackson, L.L., Sherman, D.M. and Eby, R.K. (1995) Mineralogical and geochemical evolution of micas from miarolitic pegmatites of the anorogenic Pikes Peak batholith, Colorado. Mineralogy and Petrology, 55, 126.CrossRefGoogle Scholar
Guggenheim, S., Schulze, W.A., Harris, G.A. and Lin, J. C (1983) Concentric layer silicates: An optical second harmonic generation, chemical and X-ray study. Clays and Clay Minerals, 31, 251260.CrossRefGoogle Scholar
Harada, K., Honda, M., Nagashima, K. and Kanisawa, S. (1976) Masutomilite, manganese analogue of zinnwal-dite, with special reference to masutomilite—lepidolite— zinnwaldite series. MineralogicalJournal, 8, 95109.CrossRefGoogle Scholar
Holland, T.J.B. and Redfern, S.A.T. (1997) UNITCELL: a nonlinear least-squares program for cell-parameter refinement and implementing regression and deletion diagnostics. Journal of Applied Crystallography, 30, 8484.CrossRefGoogle Scholar
Ishida, K., Hawthorne, F.C. and Hirowatari, F. (2004) Shirozulite, KMn32+(Si3Al)O10(OH)2, a new manganese-dominant trioctahedral mica: Description and crystal structure. American Mineralogist, 89, 232238.CrossRefGoogle Scholar
Kampf, A.R., Roberts, A.C., Venance, K.E., Carbone, C., Belmonte, D., Dunning, G.E. and Walstrom, R.E. (2013) Cerchiaraite-(Fe) and cerchiaraite-(Al), two new barium cyclo silicate chlorides from Italy and California, USA. Mineralogical Magazine, 77, 6980.CrossRefGoogle Scholar
Kolb, U., Mugnaioli, E. and Gorelik, T.E. (2011) Automated electron diffraction tomography — a new tool for nano crystal structure analysis. Crystal Research and Technology, 46, 542554.CrossRefGoogle Scholar
Lepore, G.O., Bindi, L., Zanetti, A., Ciriotti, M., Medenbach, O. and Bonazzi, P. (2015) Balestraite, KLi2VSi4O10O2, the first member of the mica group with octahedral V5+ . American Mineralogist, 100, 608614.CrossRefGoogle Scholar
Levinson, A.A. (1953) Studies in the mica group; relationship between polymorphism and composition in the muscovite-lepidolite series. American Mineralogist, 38, 88107.Google Scholar
Martins, T., Roda-Robles, E., Lima, A. and de Parseval, P. (2012) Geochemistry and evolution of micas in the Barroso-Alvão pegmatite field, Northern Portugal. The Canadian Mineralogist, 50, 11171129.CrossRefGoogle Scholar
Mesto, E., Schingaro, E., Scordari, F. and Ottolini, L. (2006) An electron microprobe analysis, secondary ion mass spectrometry, and single crystal X-ray diffraction study of phlogopites from Mt. Vulture, Potenza, Italy: Consideration of cation partitioning. American Mineralogist, 91, 182190.CrossRefGoogle Scholar
Miller, C., Zanetti, A., Thöni, M. and Konzett, J. (2007) Trace element mineral chemistry of the type locality (Koralpe, Saualpe) and Pohorje eclogites (Eastern Alps): implications for behaviour of fluid-mobile elements in a continental subduction zone, geochron-ology and geothermometry. Chemical Geology, 239, 96123.CrossRefGoogle Scholar
Monier, G. and Robert, J.L. (1986) Evolution of the miscibility gap between muscovite and biotite solid solutions with increasing lithium content: an experimental study in the system K2O—Li2O—MgO—FeO— Al2O3-SiO2-H2O-HF. Mineralogical Magazine, 50, 641651.CrossRefGoogle Scholar
Odom, I.E. (1984) Glauconite and celadonite minerals. Pp. 545-572 in: Micas (S.W. Bailey, editor). Reviews in Mineralogy and Geochemistry, 13. Mineralogical Society of America, Washington, DC.Google Scholar
Robert, J.L. and Maury, R.C. (1979) Natural occurrence of a (Fe, Mn, Mg) tetrasilicic potassium mica. Contributions to Mineralogy and Petrology, 68, 117123.CrossRefGoogle Scholar
Robert, J.L., Volfinger, M., Barrandon, J.N. and Basutçu, M. (1983) Lithium in the interlayer space of synthetic trioctahedral micas. Chemical Geology, 40, 337351.CrossRefGoogle Scholar
Roda-Robles, E., Pesquera, A., Gil-Crespo, P.P., Torres-Ruiz, J. and De Parseval, P. (2006) Mineralogy and geochemistry of micas from the Pinilla de Fermoselle pegmatite (Zamora, Spain). European Journal of Mineralogy, 18, 369377.CrossRefGoogle Scholar
Savitzky, A. and Golay, M.J. (1964) Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36, 16271639.CrossRefGoogle Scholar
Tiepolo, M., Zanetti, A. and Vannucci, R. (2005) Determination of Li, Be and B at trace levels by LA-ICP-MS. Geostandards and Geoanalytical Research, 29, 211224.CrossRefGoogle Scholar
Tischendorf, G., Förster, H.J., Gottesmann, B. and Rieder, M. (2007) True and brittle micas: composition and solid-solution series. Mineralogical Magazine, 71, 285320.CrossRefGoogle Scholar
Tracy, R.J. and Beard, J.S. (2003) Manganoan kinoshita-lite in Mn-rich marble and skarn from Virginia. American Mineralogist, 88, 740747.CrossRefGoogle Scholar
Tyrna, P.L. and Guggenheim, S. (1991) The crystal structure of norrishite, KLiMn23þSi4O12: an oxygen-rich mica. American Mineralogist, 76, 266271.Google Scholar
Van Lichtervelde, M., Grégoire, M., Linnen, R.L., Béziat, D. and Salvi, S. (2008) Trace element geochemistry by laser ablation ICP-MS of micas associated with Ta mineralization in the Tanco pegmatite, Manitoba, Canada. Contributions to Mineralogy and Petrology, 155, 791806.CrossRefGoogle Scholar
Zhukhlistov, A.P (2005) Crystal structure of celadonite from the electron diffraction data. Crystallography Reports, 50, 902906.CrossRefGoogle Scholar