Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-04T05:48:59.591Z Has data issue: false hasContentIssue false

Mössbauerite, Fe6 3+O4(OH)8[CO3]·3H2O, the fully oxidized ‘green rust’ mineral from Mont Saint-Michel Bay, France

Published online by Cambridge University Press:  05 July 2018

J.-M. R. Génin*
Affiliation:
Institut Jean Barriol FR2843 Université de Lorraine-CNRS, ESSTIN, 2 rue Jean Lamour, F-54500, Vandœuvre-Lès-Nancy, France
S. J. Mills*
Affiliation:
Geosciences, Museum Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia
A. G. Christy
Affiliation:
Centre for Advanced Microscopy, Sullivans Creek Road, Australian National University, Canberra 0200, ACT, Australia
O. Guérin
Affiliation:
Laboratoire de Géomorphologie, École Pratique des Hautes Études, 15 boulevard de la mer, F-35800 Dinard, France
A. J. Herbillon
Affiliation:
Unité des Sciences du Sol, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
E. Kuzmann
Affiliation:
Department of Chemistry, Eötvös Lorand University, Pazmany Peter setany, H1117, Budapest, Hungary
G. Ona-Nguema
Affiliation:
Institut Minéralogie et de Physique, Milieux Condensés, Université Pierre et Marie Curie, F75252 Paris, France
C. Ruby
Affiliation:
Institut Jean Barriol FR2843 Université de Lorraine-CNRS, ESSTIN, 2 rue Jean Lamour, F-54500, Vandœuvre-Lès-Nancy, France
C. Upadhyay
Affiliation:
School of Materials Science & Technology, IT-Banaras Hindu University, 221005 Varanasi, India

Abstract

The new mineral mössbauerite (IMA2012−049), Fe6 3+O4(OH)8[CO3]·3H2O, is a member of the fougèrite group of the hydrotalcite supergroup. Thus, it has a layered double hydroxide-type structure, in which brucite-like layers [Fe6 3+O4(OH)8]2+ are intercalated with CO3 2− anions and water molecules. Mössbauerite is the fully oxidized analogue of fougèrite and trébeurdenite, related to them chemically by the exchange of (Fe3+O2−) with (Fe2+OH). Mössbauerite, intimately intergrown with trébeurdenite, was discovered in intertidal gleys from Mont Saint-Michel Bay, France, along with quartz, feldspars and clay minerals. Mössbauerite is formed by the oxidation of the other members of the fougèrite group. Like them, it occurs as μm-scale platelets in gleys with restricted access to atmospheric O and decomposes rapidly when exposed to air. Identification and characterization of these minerals has relied on an electrochemical study of synthetic analogues and Mössbauer spectroscopy, which inspired the name of the new mineral.

Unlike fougèrite and trébeurdenite, which are blue-green, pure synthetic mössbauerite is orange in colour. Detailed optical and other physical properties could not be determined because of the small platelet size and instability. The hardness is probably 2−3, by analogy with other members of the supergroup and the density, calculated from unit-cell parameters, is 2.950 g/cm3. Synchrotron X-ray data indicate that the natural material is a nanoscale intergrowth of 2T and 3T polytypes; the latter probably has the 3T7 stacking sequence. The corresponding maximum possible space group symmetries are P m1 and P3m1. Unit-cell parameters for the 3T cell are a = 3.032(7) Å, c = 22.258(4) = 367.420 Å and Z = ½.

Mössbauer spectroscopy at 78 K indicates that two distinct Fe3+ environments exist in a 2:1 ratio. These are interpreted to be ordered within each layer, but without the development of a threedimensional superlattice. Mössbauerite undergoes gradual magnetic ordering at 70−80 K to a ferromagnetic state, below which it splits into three sextets S 1m, S 2m and S 3m, as measured at 15 K, and shows the same intensity ratio ½:⅙:⅓ as the three doublets for fougèrite D 1f, D 2f, D 3f in the paramagnetic state at 78 K. This suggests that there is also short-range coupling of interlayer carbonate anions with respect to the octahedral layers and that the 2D long-range order of carbonates in interlayers remains unchanged.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benali, O., Abdelmoula, M., Refait, Ph. and Génin, J.-M.R. (2001) Effect of orthophosphate on the oxidation products of Fe(II)-Fe(III) hydroxycarbonate: the transformation of green rust to ferrihydrite. Geochimica et Cosmochimica Acta, 65, 17151726.CrossRefGoogle Scholar
Bernal, J.D., Dasgupta, D.R. and Mackay, A.L. (1959) The oxides and hydroxides of iron and their structural inter-relationships. Clay Minerals Bulletin, 4, 1530.CrossRefGoogle Scholar
Bookin, A.S. and Drits, V.A. (1993) Polytype diversity of the hydrotalcite-like minerals. I. Possible polytypes and their diffraction features. Clays and Clay Minerals, 41, 551557.CrossRefGoogle Scholar
Bookin, A.S., Cherkashin, V.I. and Drits, V.A. (1993a) Reinterpretation of the X-ray diffraction patterns of stichtite and reevesite. Clays and Clay Minerals, 41, 631634.CrossRefGoogle Scholar
Bookin, A.S., Cherkashin, V.I. and Drits, V.A. (1993b) Polytype diversity of the hydrotalcite-like minerals. II. Determination of the polytypes of experimentally studied varieties. Clays and Clay Minerals, 41, 558564.CrossRefGoogle Scholar
Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Carlson, L. and Schwertmann, U. (1980) Natural occurrence of feroxyhite (d-FeOOH). Clays and Clay Minerals, 28, 272280.CrossRefGoogle Scholar
Christensen, B.C., Balic-Zunic, T., Dideriksen, K. and Stipp, S.L.S. (2009) Identification of green rust in groundwater. Environmental Science & Technology, 43, 34363441.CrossRefGoogle Scholar
Drissi, S.H., Refait, Ph., Abdelmoula, M. and Génin, J.-M.R. (1995) The preparation and thermodynamic properties of Fe(II)-Fe(III) hydroxycarbonate (green rust 1); Pourbaix diagram of iron in carbonatecontaining aqueous media. Corrosion Science, 37, 20252041.CrossRefGoogle Scholar
Feitknecht, W. and Keller, G. (1950) Über die Dunkelgrünen Hydroxyverbindungen des Eisens. Zeitschrift für Anorganische und Allgemeine Chemie, 262, 6168.[in German].CrossRefGoogle Scholar
Gancedo, J.R., Martínez, M.L. and Oton, J.M. (1976) Mössbauer spectroscopy study of corrosion products of iron with ammonium nitrate in aqueous solutions. Journal de Physique, 37, C6 297–C6 299.Google Scholar
Génin, J.-M.R. (2013) From fougèrite to mössbauerite through trébeurdenite; redox reactions in gleysols and role of bacteria. Mössbauer Effect Reference and Data Journal, Chinese Academy of Sciences, 36, 113160.Google Scholar
Génin, J.-M.R. and Ruby, C. (2004) Anion and cation distribution in Fe(II-III) hydroxysalts green rusts from XRD and Mössbauer analysis (carbonate, chloride, sulphate…); the “fougèrite” mineral. Solid State Science, 6, 705718.CrossRefGoogle Scholar
Génin, J.-M.R. and Ruby, C. (2008a) Composition and anion ordering in some FeII-III hydroxysalt green rusts (carbonate, oxalate, methanoate); the fougèrite mineral. Solid State Science, 10, 244259.CrossRefGoogle Scholar
Génin, J.-M.R. and Ruby, C. (2008b) Structure of some FeII-III hydroxysalt green rusts (carbonate, oxalate, methanoate) from Mö ssbauer spectrsocopy. Hyperfine Interactions, 185, 191196.CrossRefGoogle Scholar
Génin, J.-M.R., Olowe, A.A., Refait, Ph. and Simon, L. (1996) On the stoichiometry and Pourbaix diagram of Fe(II)-Fe(III) hydroxy-sulphate or sulphate-containing green rust 2: an electrochemical and Mössbauer spectroscopy study. Corrosion Science, 38, 17511762.CrossRefGoogle Scholar
Génin, J.-M.R., Bourrié, G., Trolard, F., Abdelmoula, M., Jaffrezic, A., Refait, Ph., Maitre, V., Humbert, B. and Herbillon, A. (1998a) Thermodynamic equilibria in aqueous suspensions of synthetic and natural Fe(II)-Fe(III) green rusts: occurrences of the mineral in hydromorphic soils. Environmental Science & Technology, 32, 10581068.CrossRefGoogle Scholar
Génin, J.-M.R., Refait, Ph., Simon, L. and Drissi, S.H. (1998b) Preparation and Eh-pH diagrams of Fe(II)- Fe(III) green rust compounds; hyperfine interaction characteristics and stoichiometry of hydroxy-chloride, -sulphate and -carbonate. Hyperfine Interactions, 111, 313318.CrossRefGoogle Scholar
Génin, J.-M.R., Aïssa, R., Géhin, A. Abdelmoula, M., Benali, O., Ernstsen, V., Ona-Nguema, G., Upadhyay, C. and Ruby, C. (2005) Fougèrite and FeII-III hydroxycarbonate green rust: ordering, deprotonation and/or cation substitution; structure of hydrotalcite-like compounds and mythosic ferrosic hydroxide Fe(OH)(2+x) . Solid State Sciences, 7, 545572.CrossRefGoogle Scholar
Génin, J.-M.R., Abdelmoula, M., Ruby, C. and Upadhyay, C. (2006a) Speciation of iron; characterisation and structure of green rusts and FeII-III hydroxycarbonate fougè rite. Comptes Rendus Geosciences, 338, 402419.CrossRefGoogle Scholar
Génin, J.-M.R., Ruby, C., Géhin, A. and Refait, Ph. (2006b) Synthesis of green rusts by oxidation of Fe(OH)2, their products of oxidation and reduction of ferric oxyhydroxides; Eh-pH Pourbaix diagrams. Comptes Rendus Geosciences, 338, 433446.CrossRefGoogle Scholar
Génin, J.-M.R., Ruby, C. and Upadhyay, C. (2006c) Structure and thermodynamics of ferrous, stoichiometric and ferric oxyhydroxycarbonate green rusts; redox flexibility and fougèrite mineral. Solid State Science, 8, 13301343.CrossRefGoogle Scholar
Génin, J.-M.R., Guérin, O. Herbillon, A.J., Kuzman, E., Mills, S.J., Morin, G., Ona-Nguema, G., Ruby, C. and Upadhyay, C. (2012) Redox topotactic reactions in FeII-III (oxy)-hydroxycarbonate new minerals related to fougèrite in gleysols; “trébeurdenite” and “mö ssbauerite”. Hyperfine Interactions, 204, 7181.CrossRefGoogle Scholar
Girard, A. and Chaudron, G. (1935) Sur la constitution de la rouille. Comptes Rendus de l’Academie des Sciences de Paris, 200, 127129.Google Scholar
Laugier, J. and Bochu, B. (2000) CHECKCELL: a software performing automatic cell/space group determination. Collaborative computational project number 14 (CCP14). Laboratoire des Materiaux et du Genie Physique de l’Ecole Superieure de Physique de Grenoble, France.Google Scholar
Legrand, L., Abdelmoula, M., Géhin, A. Chaussé, A. and Génin, J.-M.R. (2001) Electrochemical formation of a new Fe(II)-Fe(IIII) hydroxy-carbonate green rust: characterisation and morphology. Electrochimica Acta, 46, 18151822.CrossRefGoogle Scholar
Mills, S.J., Whitfield, P.S., Wilson, S.A., Woodhouse, J.N., Dipple, G.M., Raudsepp, M. and Francis, C.A. (2011) The crystal structure of stichtite, re-examination of barbertonite, and the nature of polytytpism in MgCr hydrotalcites. American Mineralogist, 96, 179187.CrossRefGoogle Scholar
Mills, S.J., Christy, A.G., Génin, J.-M.R., Kameda, T. and Colombo, F. (2012a) Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides. Mineralogical Magazine, 76, 12891336.CrossRefGoogle Scholar
Mills, S.J., Kampf, A.R., Housley, R.M., Favreau, G., Pasero, M., Biagioni, C., Merlino, S., Berbain, C. and Orlandi, P. (2012b) Omsite, (Ni,Cu)2Fe3+ (OH)6[Sb(OH)6], a new member of the cualstibite group from Oms, France. Mineralogical Magazine, 76, 13471354.CrossRefGoogle Scholar
Olowe, A.A. and Génin, J.-M.R. (1991) Mechanism of oxidation of ferrous hydroxide in sulfated aqueous media: importance of the initial ratio of the reactants. Corrosion Science, 32, 965984.CrossRefGoogle Scholar
Ona-Nguema, G., Abdelmoula, M., Jorand, F., Benali, O., Géhin, A. Block, J.C. and Génin, J.-M.R. (2002) Iron (II,III) hydroxycarbonate green rust formation and stabilization from lepidocrocite bioreduction. Environmental Science & Technology, 36, 1620.CrossRefGoogle ScholarPubMed
Pourbaix, M. (1975) Leçons en corrosion électrochimique. CEBELCOR, Brussels, 377 pp.Google Scholar
Refait, Ph. and Génin, J.-M.R. (1993) The oxidation of ferrous hydroxide in chloride-containing aqueous media and Pourbaix diagrams of green rust one. Corrosion Science, 34, 797819.CrossRefGoogle Scholar
Refait, Ph. and Génin, J.-M.R. (1994) The transformation of chloride-containing green rust one into sulphated green rust two by oxidation in mixed Cl–áand SO42– aqueous media. Corrosion Science, 36, 5565.CrossRefGoogle Scholar
Richardson, I.G. (2013) Clarification of possible ordered distributions of trivalent cations in layered double hydroxides and an explanation for the observed variation in the lower solid-solution limit. Acta Crystallographica, B69, 629633.Google Scholar
Ruby, C., Upadhyay, C., Géhin, A. Ona-Nguema, G. and Génin, J.-M.R. (2006) In situ redox flexibility of FeII-III oxyhydroxycarbonate green rust and fougèrite. Environmental Science & Technology, 40, 46964702.CrossRefGoogle ScholarPubMed
Ruby, C., Abdelmoula, M., Naille, S., Renard, A., Khare, V., Ona-Nguema, G., Morin, G. and Génin, J.-M.R. (2010) Oxidation modes and thermodynamics of FeII-III oxyhydroxycarbonate green rust: dissolution-precipitation versus in situ deprotonation. Geochimica et Cosmochimica Acta, 74, 953966.CrossRefGoogle Scholar
Rusch, B., Génin, J.-M.R., Ruby, C., Abdelmoula, M. and Bonville, P. (2008a) Ferrimagnetic properties in FeII-FeIII (oxy)hydroxycarbonate green rusts. Solid State Sciences, 10, 4049.CrossRefGoogle Scholar
Rusch, B., Génin, J.-M.R., Ruby, C., Abdelmoula, M. and Bonville, P. (2008b) Mö ssbauer study of magnetism in FeII-FeIII (oxy)hydroxycarbonate green rusts; ferrimagnetism of FeII-FeIII hydroxycarbonate. Hyperfine Interactions, 187, 712.CrossRefGoogle Scholar
Simon, L., François, M. Refait, Ph., Renaudin, G., Lelaurain, M. and Génin, J.-M.R. (2003) Structure of the Fe(II-III) layered double hydroxylsulphate green rust two from Rietveld analysis. Solid State Sciences, 5, 327334.CrossRefGoogle Scholar
Taylor, R.M. (1980) Formation and properties of Fe(II)- Fe(III) hydroxy-carbonate and its possible significance in soil formation. Clay Minerals, 15, 369382.CrossRefGoogle Scholar
Trolard, F., Bourrié, G., Abdelmoula, M., Refait, Ph. and Feder, F. (2007) Fougèrite, a new mineral of the pyroaurite-iowaite group: description and crystal structure. Clays and Clay Minerals, 55, 323334.CrossRefGoogle Scholar
Vysostskii, G.N. (1905) Gley. Eurasian Soil Science (Pochvovedenie), 4, 291327.Google Scholar