Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-15T15:16:24.722Z Has data issue: false hasContentIssue false

Minerals formed by the weathering of sulfides in mines of the Czech part of the Upper Silesian Basin

Published online by Cambridge University Press:  05 July 2018

D. Matýsek
Affiliation:
Technical University of Ostrava, Faculty of Mining and Geology, 17. listopadu 15/2172, 708 33 Ostrava-Poruba, Czech Republic
J. Jirásek*
Affiliation:
Technical University of Ostrava, Faculty of Mining and Geology, 17. listopadu 15/2172, 708 33 Ostrava-Poruba, Czech Republic
M. Osovský
Affiliation:
Karviná Mine, ČSA Mining Plant, ul. Čs. armády 1, 735 06 Karviná-Doly, Czech Republic
P. Skupien
Affiliation:
Technical University of Ostrava, Faculty of Mining and Geology, 17. listopadu 15/2172, 708 33 Ostrava-Poruba, Czech Republic
*

Abstract

This study describes the occurrences of sulfate minerals in mines of the Czech part of the Upper Silesian Basin. This mineralization originates from the oxidation of Fe disulfides contained in the coal matrix and enclosing sediments. The oxidation occurs in the presence of formational brines and chemotrophic bacteria. The brines have a pH between 6.3 and 8.5 and total solute content of up to 300 g/l. They are rich in Na, Ca, K, Mg, Ba and Sr and Cl is the major anion. The minerals of the pickeringite–halotrichite series with coexisting magnesiocopiapite are formed primarily in drier places and areas where the water is only slightly mineralized. In more humid places where the brines are more concentrated, a diverse assemblage of up to 20 different sulfates are found (e.g. natrojarosite, sideronatrite, metasideronatrite, tamarugite, magnesiocopiapite, bílinite, starkeyite, blödite, rozenite and siderotil). These sulfates are accompanied by halite, sulfur, goethite and a number of phases of uncertain identity, such as sulfates containing Sr and REE. This is an example of mineral paragenesis formed by weathering in a saline evaporite environment, which is extremely rare in Europe but is found in arid regions elsewhere (e.g. in the Atacama Desert in Chile).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alpers, C.N., and Blowes, D.W., (editors) (1993) Environmental geochemistry of sulfide oxidation. ACS symposium series, 550. American Chemical Society, Washington DC, 681 pp.Google Scholar
Anthony, J.W., Bideaux, R.A., Bladh, K.W., and Nichols, M.C., (editors) (2003) Handbook of Mineralogy. Volume V: Borates, Carbonates, Sulfates. Mineral Data Publishing, Tuscon, Arizona, USA, 813 pp.Google Scholar
Baltatzis, E., Stamatakis, M.G., and Kyriakopoulos, K.G., (1986) Rozenite and melanterite in lignitic layers from the Voras mountain, western Macedonia, Greece. Mineralogical Magazine, 50, 737738.CrossRefGoogle Scholar
Basciano, C. and Peterson, R. (2008) Crystal chemistry of the natrojarosite–jarosite and natrojarosite– hydronium jarosite solid solution: A synthetic study with full Fe site occupancy. American Mineralogist, 93, 853862.CrossRefGoogle Scholar
Baur, W.H., (1962) Zur Kristallchemie der Salzhydrate. Die Kristallstrukturen von MgSO4.4H2O (Leonhardtit) und MgSO4.4H2O (Rozenit). Acta Crystallographica, 15, 815826.CrossRefGoogle Scholar
Bayliss, P. and Atencio, D. (1985) X-ray powder diffraction data and cell parameters for copiapitegroup minerals. The Canadian Mineralogist, 23, 5356.Google Scholar
Bouška, V. and Dvořák, Z. (1997) Nerosty severočeské hnědouhelné pánve [Minerals of the North Bohemian Lignite Basin]. Dick, Prague, 160 pp. [in Czech with English summary].Google Scholar
Brady, K.B.C., Kania, T., Smith, M.W., and Horberger, R.J., (editors) (1998) Coal mine drainage prediction and pollution prevention in Pennsylvania. Pennsylvania Department of Environmental Protection, Harrisburg, Pennsylvania, USA, 398 pp.Google Scholar
Buckby, T., Black, S., Coleman, M.L., and Hodson, M.E., (2003) Fe-sulphate-rich evaporative mineral precipitates from the Río Tinto, southwest Spain. Mineralogical Magazine, 67, 263278.CrossRefGoogle Scholar
Buła, Z. and Z˙ aba, J. (2005) Pozycja tektoniczna Górnośla˛skiego Zagłe˛bia We˛glowego na tle prekambryjskiego i dolnopaleozoicznego podłoz˙a [Tectonic position of the Upper Silesian Basin on the Precambrian and Early Paleozoic basement]. Pp. 1542 in: LXXVI Zjazd Naukowy Polskiego Towarzystwa Geologicznego (J. Jureczka, Z. Buła and J. Z˙ aba, editors). Pań stwowy Instytut Geologiczny, Warsaw.Google Scholar
Chipera, S.J., and Vaniman, D.T., (2007) Experimental stability of magnesium sulfate hydrates that may be present on Mars. Geochimica et Cosmochimica Acta, 71, 241250.CrossRefGoogle Scholar
Chou, I.M., Seal II, R.R., and Wang, A. (2013) The stability of sulfate and hydrated sulfate minerals in environmental and planetary science. Journal of Asian Earth Sciences, 62, 734758.CrossRefGoogle Scholar
Crawotta, C.A., III (1993) Secondary iron-sulfate minerals as sources of sulfate and acidity. Pp. 345364 in: Environmental Geochemistry of Sulfide Oxidation (C.N., Alpers and D.W. Blowes, editors). ACS symposium series, 550. American Chemical Society, Washington DC.Google Scholar
Dopita, M. (editor) (1997) Geologie české části hornoslezské pánve [Geology of the Czech part of the Upper Silesian Basin]. Ministerstvo životního prostředí Č eské republiky, Prague, 280 pp. [in Czech with English summary].Google Scholar
Dopita, M. and Králík, J. (1977) Uhelné tonsteiny ostravsko-karvinského revíru [Coal tonsteins in Ostrava-Karviná Coal Basin]. OKD, Ostrava, Czech Republic, 213 pp. [in Czech with English and Russian summary].Google Scholar
Downs, R.T., and Hall-Wallace, M., (2003) The American Mineralogist crystal structure database. American Mineralogist, 88, 247250.Google Scholar
Drouet, C. and Navotsky, A. (2003) Synthesis, characterisation, and thermochemistry of K-Na- H3O jarosites. Geochimica et Cosmochimica Acta, 67, 20632074.CrossRefGoogle Scholar
Dubanský, A. (1985) Recentní sulfáty jako indikátor zápar a samovznícení uhlí [Recent sulphates as indicators of heating and spontaneous ignition of coal]. Geologický pru˚zkum, 27, 147148 [in Czech].Google Scholar
Dvořák, J. (1994) Variský flyšový vývoj v Nízkém Jeseníku na Moravě a ve Slezsku [Variscan flysch development in the Nízký Jeseník Mts. in Moravia and Silesia]. Czech Geological Survey, Prague, 80 pp. [in Czech with English summary].Google Scholar
Garvie, L.A., (1999) Sideronatrite and metasideronatrite efflorescence formed in a coastal sea-spray environment. Mineralogical Magazine, 63, 757759.CrossRefGoogle Scholar
Grmela, A. (1997) Hydrogeologie [Hydrogeological conditions]. Pp. 198204 in: Geologie české části hornoslezské pánve [Geology of the Czech part of the Upper Silesian Basin] (M. Dopita, editor). Ministerstvo životního prostředí Č eské republiky, Prague [in Czech with English summary].Google Scholar
Grygar, R. and Vavro, M. (1995) Evolution of Lugosilesian orocline (north-eastern periphery of the Bohemian Massif): kinematics of Variscan deformation. Journal of the Czech Geological Society, 40, 6590.Google Scholar
Hammarstrom, J.M., Seal II, R.R., Meier, A.L., and Kornfeld, J.M., (2005) Secondary sulfate minerals associated with acid drainage in the eastern US: recycling of metals and acidity in surficial environments. Chemical Geology, 215, 407431.CrossRefGoogle Scholar
Hawthorne, F.C., (1985) Refinement of the crystal structure of bloedite: Structural similarities in the [VIM(IVTF4)2Fn] finite-cluster minerals. The Canadian Mineralogist, 23, 669674.Google Scholar
Holmes, P.R., and Crundwell, F.K., (2000) The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: An electrochemical study. Geochimica et Cosmochimica Acta, 64, 263274.CrossRefGoogle Scholar
Honěk, J., Dopita, M. and Dvořák, P. (1997) Prouhelnění, chemicko-technologické vlastnosti a petrologie uhlí [Coalification, quality and petrology of coal seams]. Pp. 133144 in: Geologie české části hornoslezské pánve [Geology of the Czech part of the Upper Silesian Basin] (M. Dopita, editor). Ministerstvo životního prostředí Č eské republiky, Prague [in Czech with English summary].Google Scholar
Horák, J. and Špachman, V. (1991) Zvý šené obsahy síry v některých slojích československé části hornoslezské pánve (namur A–vestfál A) [Increased sulphur content in some seams of the Czechoslovakian part of the Upper Silesian Basin (Namurian A–Westphalian A)]. Pp. 4548 in: Sborník VI. uhelně geologické konference (S. Opluštil J. Pešek and P. Vízdal (editors). Prague.Google Scholar
Jirásek, J., Sedláčková, L., Sivek, M., Martínek, K. and Jureczka, J. (2013) Castle Conglomerate Unit of the Upper Silesian Basin (Czech Republic and Poland): a record of the onset of Late Mississippian C2 glaciation? Bulletin of Geosciences, 88, 893914.Google Scholar
Kalvoda, J., Babek, O., Fatka, O., Leichmann, J., Melichar, R., Nehyba, S. and Spacek, P. (2008) Brunovistulian terrane (Bohemian Massif, Central Europe) from late Proterozoic to late Paleozoic: a review. International Journal of Earth Sciences, 97, 497518.CrossRefGoogle Scholar
Kapuściński, T. and Pozzi, M. (1993) A new proposal of utilization of coal mining wastes in Murcki Coal Mine in the light of recent mineralogical and technological investigations. Pp. 711718 in: Proceedings of the 4th International Symposium on the Reclamation, Treatment and Utilization of Coal Mining Wastes, 2 (K.M. Skarz˙yń ska, editor). Krakow, Poland.Google Scholar
Kelly, D.P., and Wood, A.P., (2000) Reclasssification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. International Journal of Systematic and Evolutionary Microbiology, 50, 511516.CrossRefGoogle Scholar
Ketris, M.P., and Yudovich, Y.E., (2009) Estimation of clarkes for carbonaceous biolithes: World averages for trace element contents in black shales and coals. International Journal of Coal Geology, 78, 135148.CrossRefGoogle Scholar
Klika, Z. (1999) Oxidative altered coal from the Upper Silesian coal basin. Journal of the Czech Geological Society, 44, 335342.Google Scholar
Klika, Z. and Osovský , M. (1999) Thermally altered coal from Upper Silesian Coal Basin. Journal of the Czech Geological Society, 44, 343352.Google Scholar
Kossenberg, M. and Cook, A.C., (1961) Weathering of sulphide minerals in coal: production of ferrous sulphate heptahydrate. Mineralogical Magazine, 32, 829830.CrossRefGoogle Scholar
Kožušníková, A. (1992) Fyzikálně mechanické vlastnosti a petrologie karbonských sedimentu˚ řady uhlí- hornina [Physical mechanical properties and petrology of Carboniferous sediments in coal-rock series]. MS, Kandidátská disertační práce, Hornický ústav AV, Ostrava, Czech Republic, 136 pp. [in Czech].Google Scholar
Králík, J. (1980) Pestré vrstvy v uhlonosných sedimentech [Red Beds in Coal-Bearing Sediments]. Sborník vědeckých prací Vysoké školy báňské v Ostravě, řada hornicko-geologická, 26, 118 [in Czech with English summary].Google Scholar
Králík, J. (1982) Mineralogie pestrých vrstev v ostravsko- karvinské černouhelné pánvi [Mineralogy of Red Beds in Ostrava-Karviná Coal Basin]. Č asopis Slezského muzea, řada A, 31, 149171 [in Czech with English and Russian summary].Google Scholar
Krut’a, T. (1951) O nerostech z ostravsko-karvinského revíru [About minerals from the Ostrava-Karviná Coal District]. Přírodovědecký sborník Ostravského kraje, 12, 451486 [in Czech].Google Scholar
Kruszewski, L. (2013) Supergene sulphate minerals from the burning coal mining dumps in the Upper Silesian Coal Basin, South Poland. International Journal of Coal Geology, 105, 91109.CrossRefGoogle Scholar
Kumpera, O. (1990) Outline of the Paleozoic sediments below the Upper Silesian Carboniferous coal-bearing molasse in Upper Silesian Basin. Sborník vědeckých prací Vysoké školy báňské v Ostravě, Ř ada hornicko-geologická, 36, 91106.Google Scholar
Kumpera, O. and Martinec, P. (1995) The development of the Carboniferous accretionary wedge in the Moravian-Silesian Paleozoic Basin. Journal of the Czech Geological Society, 40, 4764.Google Scholar
Lauf, R.J., (1997) Secondary sulfate minerals from Alum cave Bluff: Microscopy and microanalysis. OAK Ridge National Laboratory, Tennessee, USA, 34 pp.CrossRefGoogle Scholar
Lipiarski, I., Muszyński, M. and Wyszomirski, P. (2004) Alunites in the red beds of the "Marcel" coal mine, Upper Silesian Coal Basin, Poland. Mineralogica Polonica, 35, 318.Google Scholar
Lizama, H.M., and Suzuki, I. (1989) Rate equations and kinetic parameters of reactions involved in pyrite oxidation by Thiobacillus ferrooxidans. Applied and Environmental Microbiology, 55, 29182923.CrossRefGoogle ScholarPubMed
Lovas, G.A., (1986) Structural study of halotrichite from Recsk (Mátra Mts., N-Hungary). Acta Geologica Hungarica, 29, 3455.Google Scholar
Ma, H., Bish, D.L., Hsiu-wen, W., and Chipera, S.J., (2009) Structure determination of the 2.5 hydrate MgSO4 phase by simulated annealing. American Mineralogist, 94, 10711074.CrossRefGoogle Scholar
Martinec, P., Jirásek, J., Kožušníková, A. and Sivek, M. (editors) (2005) Atlas uhlí české části hornoslezské pánve [Atlas of coal–the Czech part of the Upper Silesian Basin]. Anagram, Ostrava, 64 pp. [in Czech with English summary].Google Scholar
Maštalíř, V. (19261928) Recentní nerosty z karvinských dolu˚ [Recent minerals from the mines in vicinity of Karviná]. Sborník přírodovědného spolku v Moravské Ostravě, 4, 183190 [in Czech].Google Scholar
Matýsek, D. and Raclavská, H. (1999) Vznik sulfátové mineralizace na odvalech a její vliv na kvalitu spodních vod v OKR [Formation of sulphate mineralization at the dumps and its influence on the groundwater quality]. Uhlí - Rudy - Geologický pru˚zkum, 6, 816 [in Czech].Google Scholar
Matýsek, D., Raclavská, H. and Langrová, P. (2001) Sledování vlivu˚ odvalového materiálu na životní prostředí v OKR [Monitoring of the impact of spoil rock dump material on environment in Ostrava– Karviná District]. Pp. 114125 in: Hornická a pohornická krajina Horního Slezska, VŠBTechnická Univerzita Ostrava [in Czech with English abstract].Google Scholar
Moses, C.O., Nordstrom, D.K., Herman, J.S., and Mills, A. (1987) Aqueous pyrite oxidation by dissolved oxygen and ferric i ron. Geochimica et Cosmochimica Acta, 51, 15611571.CrossRefGoogle Scholar
Ohfuji, H. and Akai, J. (2002) Icosahedral domain structure of framboidal pyrite. American Mineralogist, 87, 176180.CrossRefGoogle Scholar
Paktunc, A.D., (1999) Mineralogical constraints on the determination of neutralization potential and prediction of acid mine drainage. Environmental Geology, 39, 103112.CrossRefGoogle Scholar
Pawley, G.S., (1980) EDINP, the Edinburgh powder profile refinement program. Journal of Applied Crystallography, 13, 630633.CrossRefGoogle Scholar
Pešek, J., Sýkorová, I., Jelínek, J., Michna, O., Forstová, J., Martínek, K., Vašíček, M. and Havelcová, M. (2010) Major and minor elements in the hard coal from the Czech Upper Paleozoic basins. Czech Geological Survey Special Papers, 20, 140.Google Scholar
Peterson, R.C., (2011) Cranswickite MgSO4·4H2O, a new mineral from Calingasta, Argentina. American Mineralogist, 96, 869877.CrossRefGoogle Scholar
Peterson, R.C., Roeder, P.L., and Zhang, Y. (2003) The atomic structure of siderotil, (Fe,Cu)SO4·5H2O. The Canadian Mineralogist, 41, 671676.CrossRefGoogle Scholar
Peterson, V.K., (2005) Lattice parameter measurement using Le Bail versus structural (Rietveld) refinement: A caution for complex, low symmetry systems. Powder Diffraction, 20, 1, 1417.CrossRefGoogle Scholar
Pluta, I. and Zuber, A. (1995) Origin of brines in the Upper Silesian Coal Basin (Poland) inferred from stable isotope and chemical data. Applied Geochemistry, 10, 447460.CrossRefGoogle Scholar
Quartieri, S., Triscari, M. and Viani, A. (2000) Crystal structure of the hydrated sulphate pickeringite (MgAl2(SO4)4·22H2O): X-ray powder diffraction study. European Journal of Mineralogy, 12, 11311138.CrossRefGoogle Scholar
Randall, B.A.O. and Jones, J.M., (1966) Sideronatrite from mineralized cavities in the Rising Sun colliery, Backworth, Northumberland. Mineralogical Magazine, 35, 983990.CrossRefGoogle Scholar
René, M. (1992) Distribuce uranu, thoria a zlata v karbonských sedimentech severovýchodní části Č eského masívu [Distribution of uranium, thorium and gold in Carboniferous sediments in the NE part of the Bohemian Massif]. Č asopis Slezského muzea, řada A, 41, 151157 [in Czech with English abstract].Google Scholar
Rietveld, H.M., (1967) Line profiles of neutron powderdiffraction peaks for structure refinement. Acta Crystallographica, 22, 151152.CrossRefGoogle Scholar
Rimstidt, J.D., and Vaughan, D.J., (2003) Pyrite oxidation: A state-of-art assessment of reaction mechanism. Geochimica et Cosmochimica Acta, 67, 873880.CrossRefGoogle Scholar
Robinson, P.D., and Fang, J.H., (1969) Crystal structures and mineral chemistry of double-salt hydrates: I. Direct determination of the crystal structure of tamarugite. American Mineralogist, 54, 1930.Google Scholar
Sawlowicz, Z. (1993) Pyrite framboids and their development: a new conceptual mechanism. Geologische Rundschau, 82, 149–146.CrossRefGoogle Scholar
Scordari, F. and Ventruti, G. (2009) Sideronatrite, Na2Fe(SO4)2(OH)3·3H2O: Crystal structure of the orthorombic polytype and OD character analysis. American Mineralogist, 94, 16791686.CrossRefGoogle Scholar
Süsse, P. (1972) Crystal structure and hydrogen bonding of copiapite. Zeitschrift für Kristallographie, 135, 3455.CrossRefGoogle Scholar
Szakáll, S., Földvári, M., Papp, G., Kovács-Pálffy, P. and Kovács, A. . (1997) Secondary sulphate minerals from Hungary. Acta Mineralogica-Petrographica, 38, 763.Google Scholar
Szczepanska, J. and Twardowska, I. (1999) Distribution and environmental impact of coal-mining wastes in Upper Silesia, Poland. Environmental Geology, 38, 249258.CrossRefGoogle Scholar
Thalheim, K., Reichel, W. and Witzke, T. (1991) Die Minerale des Döhlener Beckens [Minerals of the Döhlen Basin]. Schriften des Staatlichen Museums für Mineralogie und Geologie zu Dresden, 3, 1131.Google Scholar
Ventruti, G., Stasi, F. and Scordari, F. (2010) Metasideronatrite: Crystal structure and its relation with sideronatrite. American Mineralogist, 95, 329334.CrossRefGoogle Scholar
Vinš, V. (1957) Nové ná lezy recentních síranu˚ v ostravsko-karvinském revíru [New findings of the recent sulphates in the Ostrava-karviná Coal District]. Přírodovědecký sborník Ostravského kraje, 18, 436437 [in Czech].Google Scholar
Von Dreele, R.B., (1997) Quantitative texture analysis by Rietveld refinement. Journal of Applied Crystallography, 30, 517525.CrossRefGoogle Scholar
Weise, G. (1984) Rozenit (FeSO4·4 H2O) in Xyliten aus quartären Kiessanden der DDR [Rozenite, FeSO4·4 H2O, in xylites from Quaternary gravel sands of the GDR]. Chemie der Erde, 43, 171178.Google Scholar
Weiss, S. (1990) Atlas der Mineralfundstellen in Deutschland-West [Atlas of mineral localities in Western Germany]. C. Weise Verlag, München, 320 pp.Google Scholar
Welser, P., Smutný , Z. and Vlášek, R. (2010) Boyleit z porubský ch vrstev ostravského souvrství–Du˚ l Karviná, závod Lazy [Boyleite from the Poruba Member of the Ostrava Formation–Karviná Mine, Lazy Plant]. Minerál, 18, 221222.Google Scholar
Wildner, M. and Giester, G. (1991) The crystal structures of kieserite-type compounds. I. Crystal structures of Me(II)SO4·H2O (Me = Mn,Fe,Co, Ni,Zn). Neues Jahrbuch für Mineralogie Monatshefte, 7, 296306.Google Scholar
Wilkin, R.T., and Barnes, H.L., (1997) Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta, 61, 323339.CrossRefGoogle Scholar
Young, B. and Nancarrow, P.H.A. (1988) Rozenite and other sulphate minerals from the Cumbrian coalfield. Mineralogical Magazine, 52, 551553.CrossRefGoogle Scholar
Zalkin, A., Ruben, H. and Templeton, D.H., (1964) The crystal structure and hydrogen bonding of magnesium sulfate hexahydrite. Acta Crystallographica, 17, 235240.CrossRefGoogle Scholar
Zodrow, E.L., Wiltshire, J. and McCandlish, K. (1979) Hydrated sulfates in the Sydney coalfield of Cape Breton, Nova Scotia, II. Pyrite and its alteration products. The Canadian Mineralogist, 17, 6370.Google Scholar
Zodrow, E.L., (1980) Hydrated sulfates in the Sydney coalfield of Cape Breton, Nova Scotia, Canada: the copiapite group. American Mineralogist, 65, 961967.Google Scholar