Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T07:57:12.661Z Has data issue: false hasContentIssue false

Mineralogy of complex Co-Ni-Bi vein mineralization, Bieber deposit, Spessart, Germany

Published online by Cambridge University Press:  05 July 2018

T. Wagner*
Affiliation:
Mineralogisches Institut, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany Department of Earth and Planetary Sciences, McGill University, 3450 University Street, Montréal QC H3A 2A7, Canada
J. Lorenz
Affiliation:
Graslitzer Str. 5, D-63791 Karlstein am Main, Germany
*

Abstract

Post-Variscan vein-type Co-Ni-Bi ores of the Bieber deposit, Spessart mountains, Germany, which are related to the Permian Kupferschiefer, have been investigated by ore microscopy, X-ray powder diffraction and electron-probe microanalysis. The samples contain a variety of ore minerals, notably skutterudite, native bismuth, cobaltite, alloclasite, niccolite, maucherite, gersdorffite, rammelsbergite/pararammelsbergite, safflorite, loellingite and emplectite. The ores display structures indicative of multiple brecciation and complex zoned arsenide assemblages. Three sequential stages of deposition are identified, which are (1) the Cu stage, (2) the main Co-Ni-Bi stage, and (3) the late stage. The arsenide minerals, notably skutterudite, diarsenides and sulpharsenides, show a large range of compositional variation in Co-Ni-Fe space. A relatively limited number of skutterudite and diarsenide compositions lie outside the compositional fields established in the literature. Skutterudite and diarsenides are characterized by a significant substitution of As by S up to 0.44 a.p.f.u. and 0.31 a.p.f.u., respectively, which is larger than the range previously reported for these minerals. Sulpharsenide compositions can be grouped into three populations, which conform to cobaltian arsenopyrite, cobaltite and gersdorffite. They display highly variable As/S ratios between 0.95:1.00 and 1.29:0.73, consistent with experimental data. Estimates of the formation temperatures, based on the presence of dendritic native bismuth and emplectite, are in the range 100–300°C, similar to different post-Variscan mineralization styles widespread in Central Europe. Comparison of the Co-Ni-Bi vein assemblage with the framework of available paragenetic information and radiometric age data for regional mineralization events indicates an age of mineralization of ~150–160 Ma for the Bieber deposit.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akinfiyev, N.N., Zotov, A.V. and Nikonorov, A.P. (1992) Thermodynamic analysis of equilibria in the system As (III)-S(II)-O-H. Geochemistry International, 29, 109121.Google Scholar
Ballantyne, J.M. and Moore, J.N. (1988) Arsenic geochemistry in geothermal systems. Geochimica et Cosmochimica Acta, 52, 475483.CrossRefGoogle Scholar
Bayliss, P. (1969) X-ray data, optical anisotropism, and thermal stability of cobaltite, gersdorffite, and ullmannite. Mineralogical Magazine, 37, 2633.CrossRefGoogle Scholar
Bechtel, A. and Püttmann, W. (1991) The origin of the Kupferschiefer-type mineralization in the Richelsdorf Hills, Germany, as deduced from stable isotope and organic geochemical studies. Chemical Geology, 91, 118.CrossRefGoogle Scholar
Behr, H.J., Horn, E.E., Frentzel-Beyme, K. and Reutel, C. (1987) Fluid inclusion characteristics of the Variscan and post-Variscan mineralizing fluids in the Federal Republic of Germany. Chemical Geology, 61, 273285.CrossRefGoogle Scholar
Behr, H.J., Gerler, J., Hein, U.F. and Reutel, C.J. (1993) Tectonic Brines und Basement Brines in den mitteleuropäischen Varisziden: Herkunft, metallogenetische Bedeutung und geologische Aktivität. Göttinger Arbeiten zur Geologie Paläontologie, 58, 328.Google Scholar
Blair, T. (1997) Thermochemical arsenite reduction (TAR): A new hypothesis for the origin of “Cobalt-type” Ni-Co-arsenide vein deposits. Thesis, McGill University, Canada, 38 pp.Google Scholar
Diederich, G. and Laemmlen, M. (1964) Das obere Biebertal im Nordspessart. Neugliederung des Unteren Buntsandsteins, Exkursionsführer und geologische Karte. Geologisches Jahrbuch Hessen, 48, 34 pp.Google Scholar
Dobbe, R.T.M. and Oen, I.S. (1994) The polymetallic Cu-Co ores in the central mineralized zone at Tunaberg, Bergslagen, Sweden. Neues Jahrbuch für Mineralogie Abhandlungen, 166, 261294.Google Scholar
Fleet, M.E. (1972) The crystal structure of pararam-melsbergite (NiAs2). American Mineralogist, 57, 19.Google Scholar
Freymann, K. (1991) Der Metallerzbergbau im Spessart. Ein Beitrag zur Montangeschichte des Spessarts. Veröffentlichungen des Geschichts- und Kunstvereins Aschaffenburg, 33, 413 pp.Google Scholar
Gerlach, R. (1992) Kluftgebundene Mineralisationen im subsalinaren Tafeldeckgebirge des Harzvorlandes – Lagerstättentyp Mansfelder Rücken. Zeitschrift für geologische Wissenschaften, 20, 233238.Google Scholar
Godovikov, A.A. and Kolonin, G.R. (1966) Experimentelle Untersuchungen der Bildungsbedingungen von Wismut und die Möglichkeiten seiner Benutzung als geologisches Thermometer. Zeitschrift für Angewandte Geologie, 12, 128130.Google Scholar
Haack, U. and Lauterjung, J. (1993) Rb/Sr dating of hydrothermal overprint in Bad Grund by mixing lines. Pp. 103113 in: Formation of Hydrothermal Vein Deposits – a Case Study of the Pb–Zn, Barite and Fluorite Deposits of the Harz Mountains.(Möller, P. and Lüders, V., editors). Monograph Series on Mineral Deposits, 30. Borntraeger, Berlin.Google Scholar
Hagedorn, B. and Lippolt, H.J. (1993) Isotopic age constraints for epigenetic mineralizations in the Harz mountains (Germany) from K-Ar, 40Ar/39Ar and Rb-Sr data of authigenic K-feldspars. Pp. 87102 in: Formation of Hydrothermal Vein Deposits – a Case Study of the Pb-Zn, Barite and Fluorite Deposits of the Harz Mountains.(Möller, P. and Lüders, V., editors). Monograph Series on Mineral Deposits, 30. Borntraeger, Berlin.Google Scholar
Halliday, A.N. and Mitchell, J.G. (1984) K-Ar ages of clay-size concentrates from the mineralization of the Pedroches Batholith, Spain, and evidence for Mesozoic hydrothermal activity associated with the breakup of Pangaea. Earth and Planetary Science Letters, 68, 229239.CrossRefGoogle Scholar
Hautmann, S., Brander, H., Lippolt, H.J. and Lorenz, J. (1999) K-Ar and (U+Th)-He chronometry of multistage alteration and mineralisation in the Hartkoppe rhyolite, Spessart, Germany. Journal of Conference Abstracts, 4, 769.Google Scholar
Hofmann, R. (1979) Die Entwicklung der Abscheidungen in den gangförmigen, hydrothermalen Barytvorkommen Mitteleuropas. Pp. 81214 in: Zur Minerogenie des hydrothermalen Baryts in Deutschland. Monograph Series on Mineral Deposits. 17. Borntraeger, Berlin.Google Scholar
Ixer, R.A., Stanley, C.J. and Vaughan, D.J. (1979) Cobalt-, nickel-, and iron-bearing sulpharsenides from the north of England. Mineralogical Magazine, 43, 389395.CrossRefGoogle Scholar
Jochum, J. (2000) Variscan and post-Variscan lead-zinc mineralization, Rhenish Massif, Germany: evidence for sulfide precipitation via thermochemical sulfate reduction. Mineralium Deposita, 35, 451464.CrossRefGoogle Scholar
Kautzsch, E. (1953) Tektonik und Paragenese der Rücken im Mansfelder und Sangerhäuser Kupferschiefer. Geologie, 1, 324.Google Scholar
Klemm, D. (1965 a) Untersuchung mit der Elektronenstrahlmikrosonde über die natürlichen Mischkristallbereiche der Skutterudite. Contributions to Mineralogy and Petrology, 11, 322333.CrossRefGoogle Scholar
Klemm, D. (1965 b) Synthesen und Analysen in den Dreiecksdiagrammen FeAsS-CoAsS-NiAsS und FeS2-CoS2-NiS2 . Neues Jahrbuch für Mineralogie Abhandlungen, 103, 205255.Google Scholar
Kling, M. (1997) Genesis of the ankerite-siderite-baryte deposit of Kamsdorf (Thuringia, Germany): Fluid inclusion, Sr- and stable isotope constraints. Pp. 535537 in: Mineral Deposits: Research and Exploration, Where do they Meet?(Papunen, H., editor). Proceedings of the 4th biennial SGA meeting, Turku.Google Scholar
Krupp, R.E. and Seward, T.M. (1990) Transport and deposition of metals in the Rotokawa geothermal system, New Zealand. Mineralium Deposita, 25, 7381.CrossRefGoogle Scholar
Lorenz, J. (1991) Die Mineralien im Rhyolith von Sailauf – eine Ergänzung. Aufschluss, 42, 138.Google Scholar
Lorenz, J. (1995) Mineralisationen aus dem Rhyolith-Steinbruch von Sailauf einschließlich der Neufunde von ged. Arsen, Bertrandit, Humboldtin und Tilasit. Aufschluss, 46, 105122.Google Scholar
Lüders, V. and Möller, P. (1992) Fluid evolution and ore deposition in the Harz Mountains (Germany). European Journal of Mineralogy, 4, 10531068.CrossRefGoogle Scholar
Lüders, V., Gerler, J., Hein, U.F. and Reutel, C.J. (1993) Chemical and thermal development of ore-forming solutions in the Harz Mountains: a summary of fluid inclusion studies. Pp. 117132 in: Formation of Hydrothermal Vein Deposits – a Case Study of the Pb–Zn, Barite and Fluorite Deposits of the Harz Mountains.(Möller, P. and Lüders, V., editors). Monograph Series on Mineral Deposits, 30. Borntraeger, Berlin.Google Scholar
Matthes, S. and Okrusch, M. (1965) Spessart. Sammlung geologischer Führer. vol. 44. Borntraeger, Berlin, 220 pp.Google Scholar
Muchez, P., Slobodnik, M., Viaene, W. and Keppens, E. (1994) Mississippi Valley-type Pb-Zn mineralization in eastern Belgium: Indications for gravity-driven flow. Geology, 22, 10111014.2.3.CO;2>CrossRefGoogle Scholar
Murawski, H. (1954) Bau und Genese von Schwerspatlagerstätten des Spessart. Neues Jahrbuch für Geologie Paläontologische Monatshefte, 145163.Google Scholar
Oen, I.S., Dunn, P.J. and Kieft, C. (1984) The nickelarsenide assemblage from Franklin, New Jersey; description and interpretation. Neues Jahrbuch für Mineralogie Abhandlungen, 150, 259272.Google Scholar
Petruk, W., Harris, D.C. and Stewart, J.M. (1971) Characteristics of arsenides, sulpharsenides and antimonides. Canadian Mineralogist, 11, 150186.Google Scholar
Pokrovski, G., Gout, R., Schott, J., Zotov, A. and Harrichouri, J.C. (1996) Thermodynamic properties and stoichiometry of As(III) hydroxide complexes at hydrothermal conditions. Geochimica et Cosmochimica Acta, 60, 737749.CrossRefGoogle Scholar
Radcliffe, D. and Berry, L.G. (1968) The safflorite-loellingite solid solution series. American Mineralogist, 53, 18561881.Google Scholar
Ramdohr, P. (1981) The Ore Minerals and their Intergrowths. Pergamon Press, Oxford, 1207 pp.Google Scholar
Rentzsch, J. and Knitzschke, G. (1968) Die Erzmineralparagenesen des Kupferschiefers und ihre regionale Verbreitung. Freiberger Forschungsh., C231, 189211.Google Scholar
Roseboom, L. (1962) Skutterudites (Co,Ni,Fe)As3-x: composition and cell dimensions. American Mineralogist, 47, 310327.Google Scholar
Roseboom, L. (1963) Co-Fe-Ni diarsenides: composition and cell dimension. American Mineralogist, 48, 271299.Google Scholar
Rosner, B. (1970) Untersuchungen mit der Elektron-enstrahlmikrosonde an natürlichen Skutteruditen. Contributions to Mineralogy and Petrology, 28, 135146.CrossRefGoogle Scholar
Schmitt, R.T. (1992) Die Grube Hilfe Gottes bei Großkahl im Spessart. Aufschluss, 43, 309318.Google Scholar
Schmitt, R.T. (1993 a) Sulfide und Arsenide aus den Gruben Segen Gottes bei Huckelheim und Hilfe Gottes bei Großkahl im Spessart. Aufschluss, 44, 111122.Google Scholar
Schmitt, R.T. (1993 b) Wismutminerale aus den Barytgängen des Spessarts. Aufschluss, 44, 329336.Google Scholar
Schwenzer, S.P., Tommaseo, C.E., Kersten, M. and Kirnbauer, T. (2001) Speciation and oxidation kinetics of arsenic in the thermal springs of Wiesbaden spa, Germany. Fresenius Journal of Analytical Chemistry, 371, 927933.CrossRefGoogle ScholarPubMed
Speczik, S. (1995) The Kupferschiefer mineralization of central Europe: New aspects and major areas of future research. Ore Geology Reviews, 9, 411426.CrossRefGoogle Scholar
Sugaki, A., Kitakaze, A. and Hayashi, K. (1981) Synthesis of minerals in the Cu-Fe-Bi-S system under hydrothermal condition and their phase relations. Bulletin de Mineralogie, 104, 484495.CrossRefGoogle Scholar
Sun, Y. and Püttmann, W. (1997) Metal accumulation during and after deposition of the Kuferschiefer from the Sangerhausen basin, Germany. Applied Geochemistry, 12, 577592.CrossRefGoogle Scholar
Sun, Y. and Püttmann, W. (2000) The role of organic matter during copper enrichment in Kupferschiefer from the Sangerhausen basin, Germany. Organic Geochemistry, 31, 11431161.CrossRefGoogle Scholar
Tobschall, H.J., Schmidt, F.P. and Schumacher, C. (1986) Exkursion C 2; Kupferschiefer und Kupfervererzungen im Richelsdorfer Gebirge, Hessen; Ihre Entstehung im Rahmen der sedimentären Entwicklung des basalen Zechsteins. Fortschritte der Mineralogie, 64, 2, 143160.Google Scholar
Vaughan, D.J., Sweeney, M., Friedrich, G., Diedel, R. and Haranczyk, C. (1989) The Kupferschiefer: An overview with an appraisal of the different types of mineralization. Economic Geology, 84, 10031027.CrossRefGoogle Scholar
Wang, N. (1994) The Cu-Bi-S system: results from lowtemperature experiments. Mineralogical Magazine, 58, 201204.CrossRefGoogle Scholar
Weber, K. (1995) The Spessart Crystalline Complex. Pp. 167173 in: Pre-Permian Geology of Central and Eastern Europe.(Dalmeyer, R., Franke, W. and Weber, K., editors). Springer, Berlin.CrossRefGoogle Scholar
Wernicke, R.S. and Lippolt, H.J. (1995) Direct isotope dating of a Northern Schwarzwald qtz-ba-hem vein. Neues Jahrbuch für Mineralogie Monatshefte, 161172.Google Scholar
Wernicke, R.S. and Lippolt, H.J. (1997 a) (U+Th)-He evidence of Jurassic continuous hydrothermal activity in the Schwarzwald basement, Germany. Chemical Geology, 138, 273285.CrossRefGoogle Scholar
Wernicke, R.S. and Lippolt, H.J. (1997 b) Evidence of Mesozoic multiple hydrothermal activity in the basement of Nonnenwattweiher (southern Schwarzwald), Germany. Mineralium Deposita, 32, 197200.CrossRefGoogle Scholar
Wood, S.A. and Samson, I.M. (1998) Solubility of ore minerals and complexation of ore metals in hydrothermal solutions. Reviews in Economic Geology, 10, 3376.Google Scholar
Wrobel, P.L. (2000) Postcollisional lamprophyres and hydrous basaltic dykes from the Mid German Crystalline Rise: resolution of the effects of mantle metasomatism, wedge depletion, melting degree, fractionation and crustal assimilation. PhD thesis, University of Würzburg, Germany, 180 pp.Google Scholar
Yund, R.A. (1962) The system Ni-As-S; phase relations and mineralogical significance. American Journal of Science, 260, 761782.CrossRefGoogle Scholar
Zakrzewski, M.A., Burke, E.A.J. and Nutgeren, H.W. (1980) Cobalt minerals in the Hällefors area, Bergslagen, Sweden: new occurrences of costibite, paracostibite, nisbite and cobaltian ullmannite. The Canadian Mineralogist, 18, 165171.Google Scholar
Zheng, Y.F. and Hoefs, J. (1993) Stable isotope geochemistry of hydrothermal mineralizations in the Harz Mountains. II. Sulfur and oxygen isotopes of sulfides and sulfate and constraints on metallogenic models. Pp. 211229 in: Formation of Hydrothermal Vein Deposits – a Case Study of the Pb-Zn, Barite and Fluorite Deposits of the Harz Mountains. Monograph Series on Mineral Deposits, 30. Borntraeger, Berlin.Google Scholar
Ziegler, P.A. (1987) Late Cretaceous and Cenozoic intra-plate compressional deformation in the Alpine foreland a geodynamic model. Tectonophysics, 137, 389420.CrossRefGoogle Scholar