Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T10:52:29.840Z Has data issue: false hasContentIssue false

Mineral-melt-fluid composition of carbonate-bearing cumulate xenoliths in Tertiary alkali basalts of southern Slovakia

Published online by Cambridge University Press:  05 July 2018

V. Hurai*
Affiliation:
Geological Institute, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
M. Huraiová
Affiliation:
Department of Mineralogy and Petrology, Comenius University, 842 15 Bratislava, Slovakia
P. Konečný
Affiliation:
Geological Survey of Slovakia, Mlynská dolina, 817 04 Bratislava, Slovakia
R. Thomas
Affiliation:
GeoforschungsZentrum, Telegrafenberg A51, 14473 Potsdam, Germany

Abstract

Two types of carbonatic cumulate xenoliths occur in alkali basalts of the northern part of the Carpatho-Pannonian region, Central Europe. One is dominated by Ca-Fe-Mg carbonates with randomly distributed bisulphide globules (Fe1+xS2, x = 0–0.1), Mg-Al spinel, augite, rhönite, Ni-Co-rich chalcopyrite, and a Fe(Ni,Fe)2S4 phase. The second, carbonatic pyroxenite xenolith type, is composed of diopside, subordinate fluorapatite, interstitial Fe-Mg carbonates, and accessory K-pargasite, F-Al-rich ferroan phlogopite, Mg-Al spinel, albite and K-feldspar. All accessory minerals occur in ultrapotassic dacite-trachydacite glass in primary silicate melt inclusions in diopside, together with calcio-carbonatite and CO2-N2-CO inclusions. Textural evidence is provided for multiphase fluid-melt immiscibility in both xenolith types. The carbonatic pyroxenite type is inferred to have accumulated from differentiated, volatile-rich, ultrapotassic magma derived by a very low-degree partial melting of strongly metasomatized mantle. Mineral indicators point to a genetic link between the carbonatite xenolith with olivine-fractionated, silica-undersaturated alkalic basalt ponded at the mantle-crust boundary.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, SJ. and Roeder, P.L. (2001) The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology, 42, 2279–2302.CrossRefGoogle Scholar
Braga, R., Morten, L. andZanetti, A. (2006) Origin of a mica megacryst in an alkaline dyke from the Veneto Volcanic Province, Italy. European Journal of Mineralogy, 18, 223–231.CrossRefGoogle Scholar
Burke, E.AJ. (1994) Raman microspectrometry of fluid inclusions: the daily practice. Pp. 25–44 in Fluid Inclusions in Minerals: Methods and Applications (de Vivo, B. and Frezzotti, M.L., editors). Short Course of the IMA Working Group, Siena.Google Scholar
Cesare, B., Cruciani, G. and Russo, V. (2003) Hydrogen deficiency in Ti-rich biotite from anatectic metape-lites (El Joyazo, SE Spain): Crystal-chemical aspects and implications for high-temperature petrogenesis. American Mineralogist, 88, 583–595.CrossRefGoogle Scholar
Dietrich, H. and Poultidis, H. (1985) Petrology of ultramafic xenoliths in alkali basalts from Kloch and Stradner Kogel, Styria, Austria. Neues Jahrbuch für Mineralogie, Abhandlungen , 151, 131–140.Google Scholar
Dostal, J. and Owen, J.V. (1998) Cretaceous alkaline lamprophyres from northeastern Czech Republic: geochemistry and petrogenesis. Geologische Rundschau, 87, 67–77.CrossRefGoogle Scholar
Dubessy, J., Poty, B. and Ramboz, C. (1989) Advances in C-O-H-N-S fluid geochemistry based on micro-Raman spectrometric analysis of fluid inclusions. European Journal of Mineralogy, 1, 517–534.CrossRefGoogle Scholar
Ebel, D.S. and Naldrett, AJ. (1996) Fractional crystallization of sulfide ore liquids at high temperature. Economic Geology, 91, 607–21.CrossRefGoogle Scholar
Embey-Isztin, A., Scharbert, H.G., Dietrich, H. and Poultidis, H. (1990) Mafic granulite and clinopyrox-enite xenoliths from the Transdanubian Volcanic Region (Hungary): implications for the deep structure of the Pannonian Basin. Mineralogical Magazine, 54, 463–483.CrossRefGoogle Scholar
Genge, M.J., Jones, A.P. and Price, G.D. (1995) An infrared and Raman-study of carbonate glasses–implications for the structure of carbonatite magmas. Geochimica et Cosmochimica Ada, 59, 927–937.CrossRefGoogle Scholar
Grapes, R.H., Wysoczanski, RJ. and Hoskin, P.W.O. (2003) Rhönite paragenesis in pyroxenite xenoliths, Mount Sidley volcano, Marie Byrd Land, West Antarctica. Mineralogical Magazine, 67, 639–651.CrossRefGoogle Scholar
Horváth, E. (1993) Towards a mechanical model for the formation of the Pannonian Basin. Tectonophysics, 226, 333–357.CrossRefGoogle Scholar
Horváth, I. and Ódor, L. (1984) Alkaline ultrabasic rocks and associated silicocarbonatites in the NE part of the Transdanubian Mts. (Hungary). Mineralia Slovaca, 16, 115–119.Google Scholar
Hurai, V., Simon, K., Wiechert, U., Hoefs, J., Konečný, P., Huraiová, M., Pironon, J. and Lipka, J. (1998) Immiscible separation of metalliferous Fe/Ti-oxide melts from fractionating alkali basalt: P-T-/O2 conditions and two-liquid elemental partitioning. Contributions to Mineralogy and Petrology, 133, 12–29.CrossRefGoogle Scholar
Huraiová, M. and Konečný, P. (2006) U-Pb-Th dating and chemical composition of monazite in syenite and pincinite xenoliths from the Late Miocene maar near Pincina village (the Lučenec Basin). Mineralia Slovaca, 38, 141–150.Google Scholar
Huraiová, M., Konečný, P., Konečný, V., Simon, K and Hurai, V. (1996) Mafic and felsic igneous xenoliths in late Tertiary alkali basalts: fluid inclusion and mineralogical evidence for a deep-crustal magmatic reservoir in the Western Carpathians. European Journal of Mineralogy, 8, 901–916.CrossRefGoogle Scholar
Huraiová, M., Dubessy, J., Konečný, P., Simon, K., Krai', J., Zielinski, G., Lipka, J. and Hurai, V. (2005) Glassy orthopyroxene granodiorites of the Pannonian Basin: tracers of ultra-high temperature deep-crustal anatexis triggered by Tertiary basaltic volcanism. Contributions to Mineralogy and Petrology, 148, 615–633.CrossRefGoogle Scholar
Kamenetsky, V.S., Crawford, A.J. and Meffre, S. (2001) Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology, 42, 655–671.CrossRefGoogle Scholar
Kantor, J. and Wiegerová, V. (1981) Radiometric ages of some basalts of Slovakia by K/Ar method. Geologica Carpathica, 32, 29–34.Google Scholar
Konečný, P., Huraiová, M. and Thomas, R. (1999) Upper mantle melts and volatiles of the Western Carpathians: a reappraisal. Terra Nostra, 6, 168–169.Google Scholar
Konečný, V., Lexa, J., Balogh, K and Konečný, P. (1995) Alkali basalt volcanism in Southern Slovakia: volcanic forms and time evolution. Ada Vulcanologica, 7, 167–172.Google Scholar
Konečný, V., Lexa, J. and Balogh, K (1999) Neogene-Quaternary alkali basalt volcanism in central and southern Slovakia (Western Carpathians). Geolines, 9, 67–75.Google Scholar
Konečný, V., Kováč, M., Lexa, J. and Šefara, J. (2002) Neogene evolution of the Carpatho-Pannonian region: an interplay of subduction and back-arc diapiric uprise in the mantle. EGS Stephan Mueller Special Publication Series, 1, 165–194.Google Scholar
Kullerud, G., Yund, R.A. and Moh, G.H. (1969) Phase relations in the Cu-Fe-S, Cu-Ni-S and Fe-Ni-S systems. Pp. 323–343 in: Magmatic Ore Deposits (Wilson, H.D.B., editor). Economic Geology Publishing Co., Lancaster, Pennsylvania.Google Scholar
Kunzmann, T. (1999) The aenigmatite-rhonite mineral group. European Journal of Mineralogy, 11, 734–756.CrossRefGoogle Scholar
Kyle, P. R. and Price, R. (1975) Occurrences of rhonite in the McMurdo Volcanic Group, Antarctica and Otago Volcano, New Zealand. American Mineralogist, 60, 722–725.Google Scholar
Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, ID., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K, Laird, I, Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, EJ.W. and Youzhi, G. (1997) Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. The Canadian Mineralogist, 35, 219–246.Google Scholar
Lindsley, D.H. (1983) Pyroxene thermometry. American Mineralogist 68, 477–493.Google Scholar
Mazdab, F.K. (2003) The diversity and occurrence of potassium-dominant amphiboles. The Canadian Mineralogist, 41, 1329–1344.CrossRefGoogle Scholar
Nédli, Zs. and Tóth, T.M. (2006) Origin and geodynamic significance of Upper Cretaceous lamprophyres from the Villany Mts (S Hungary). Mineralogy and Petrology, DOI 10.1007/s00710–006–0168-yCrossRefGoogle Scholar
Nemčok, M., Pospíšil, L., Lexa, J. and Donelick, R.A. (1998) Tertiary subduction and slab break-off model of the Carpathian-Pannonian region. Tectonophysics, 295, 307–340.CrossRefGoogle Scholar
Nimis, P. (1995) A clinopyroxene geobarometer for basaltic systems based on crystal-structure modelling. Contributions to Mineralogy and Petrology , 111, 115–125.Google Scholar
Nimis, P. (1999) Clinopyroxene geobarometry of magmatic rocks. Part 2. Structural geobarometers for basic to acid, tholeiitic and mildly alkaline magmatic systems. Contributions to Mineralogy and Petrology, 135, 62–74.CrossRefGoogle Scholar
Pécskay, Z., Lexa, J., Szakácz, A., Balogh, K., Seghedi, I., Konečný, V., Kováč, M., Márton, E., Kaliciak, M., Széky-Fux, V., Póka, T., Gyarmati, P., Edelstein, O., Roşu, E. and Kec, B. (1995) Space and time distribution of Neogene and Quartemary volcanism in the Carpatho-Pannonian region. Ada Vulcanologica, 7, 15–28.Google Scholar
Pécskay, Z., Lexa, J., Szakácz, A., Seghedi, I., Balogh, K., Konečný, V., Zelenka, T., Kovacs, M., Poka, T., Fülöp, A., Márton, E., Panaiotu, C. and Cvetkovic, V. (2006) Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathian area. Geologica Capathica, 57, 511–530.Google Scholar
Pouchou, J.L. and Pichoir, F. (1984) Un nouveau modele de calcul pour la microanalyse quantitative par spéctrometrie de rayons X - Partie II: application á Panalyse d'échantillons hétérogènes en profondeur. La Recherche Aérospatiale, 5, 349–367.Google Scholar
Prelević, D., Foley, S.F., Romer, R.L., Cvetkovic, V. and Downes, H. (2005) Tertiary ultrapotassic volcanism in Serbia: Constraints on petrogenesis and mantle source characteristics. Journal of Petrology, 46, 1443–1487.CrossRefGoogle Scholar
Rieder, M., Cavazzini, G., Dyakonov, Y.S., Frank-Kamenetskiy, V.A.F., Gottardi, G., Guggenheim, S., Koval, P.V., Müller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J.-L., Sassi, F.P., Takeda, H., Weiss, Z. and Wones, D.R. (1998) Nomenclature of the micas. The Canadian Mineralogist, 36, 41–48.Google Scholar
Rinaudo, C, Belluso, E. and Gastaldi, D. (2004) Assessment of the use of Raman spectroscopy for the determination of amphibole asbestos. Mineralogical Magazine, 68, 455–465.CrossRefGoogle Scholar
Rinaudo, C, Cairo, S., Gastaldi, D., Gianfagna, A., Mazziotti Tagliani, S., Tosi, G. and Conti, C. (2006) Characterization of fluoro-edenite by |i-Raman and (i-FTIR spectroscopy. Mineralogical Magazine, 70, 291–298.CrossRefGoogle Scholar
Rutt, H.N. and Nicola, J.H. (1974) Raman spectra of carbonates of calcite structure. Journal of Physics C: Solid State Physics, 7, 4522–4528.CrossRefGoogle Scholar
Span, R. and Wagner, W. (1996) A new equation of state for carbon dioxide covering the fluid region from triple-point temperature to 1100 K at pressures up to 800 MPa. Journal of Physical and Chemical Reference Data, 25, 1509–1596.CrossRefGoogle Scholar
Szabó, C. and Bodnar, R.J. (1995) Chemistry and origin of mantle sulfides in spinel peridotite xenoliths from alkaline basaltic lavas, Nógrád Gömör Volcanic Field, northern Hungary and southern Slovakia. Geochimica et Cosmochimica Acta, 59, 3917–3927.CrossRefGoogle Scholar
Szabó, C, Kubovics, I. and Molnar, Z. (1993) Alkaline lamprophyre and related dyke rocks in NE Transdanubia, Hungary: the Alcsutdoboz-2 (AD-2) borehole. Mineralogy and Petrology, 47, 127–148.Google Scholar
Waters, DJ. and Charnley, N.R. (2002) Local equilibrium in polymetamorphic gneiss and the titanium substitution in biotite. American Mineralogist, 87, 383–396.CrossRefGoogle Scholar
White, W.B. (1974) The carbonate minerals. Pp. 227–284 in: The Infrared Spectra of Minerals (Farmer, V.C., editor). Mineralogical Society Monograph 4, Mineralogical Society, London.Google Scholar
Zajacz, Z. and Szabó, C. (2003) Origin of sulfide inclusions in cumulate xenoliths from Nograd-Gomor Volcanic Field, Pannonian Basin (north Hungary/south Slovakia). Chemical Geology, 194, 105–117.CrossRefGoogle Scholar