Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-30T15:32:54.389Z Has data issue: false hasContentIssue false

Mineral reactions in sulphide systems as indicators of evolving fluid geochemistry – a case study from the Apollo mine, Siegerland, FRG

Published online by Cambridge University Press:  05 July 2018

Thomas Wagner
Affiliation:
Mineralogisches Institut der Universität Wiarzburg, Am Hubland, D-97074 Würzburg, Germany
Nigel J. Cook
Affiliation:
Mineralogisches Institut der Universität Wiarzburg, Am Hubland, D-97074 Würzburg, Germany

Abstract

The textural and paragenetic relationships of sulphide and sulphosalt minerals within Cu-Pb-Sb-Bi hydrothermal vein mineralization at the Apollo mine, Siegerland, Germany, are interpreted in terms of various reaction sequences. An earlier primary sulphide mineralization hosted within a siderite vein of the Siegerland type, with pyrite, chalcopyrite, sphalerite and galena as main component phases, has been overprinted by Sb-, Bi- and Cu-rich fluids. This superposition resulted in the formation of new quartz-stibnite veins, and various mineral reactions with the primary sulphides including the formation of the sulphosalt minerals semseyite, tetrahedrite, meneghinite, jaskolskiite, boulangerite, bournonite and zinkenite. Based on microprobe analyses of reaction pairs and determination of mineral proportions in some cases, a series of quantitative data for each mineral reaction may be generated. This, in turn, allows for the construction of isocon diagrams permitting the relative mobility and immobility of all chemical elements involved in each reaction to be discussed. Two stages of reactive replacement are identified, characterized by immobile behaviour of S and supply of Sb and Cu during the first stage and relative immobility of S and Sb with no further supply of metals during the second stage. Formation of sulphosalts inside the siderite vein during the first stage is interpreted as a decrease of disequilibrium between hydrothermal fluids and pre-existing vein minerals. Replacement processes of the second stage are interpreted as an equilibration of geochemical contrasts between different points within the siderite vein and also between the siderite and quartz-stibnite vein systems. The geochemical evolution of fluid composition during the entire mineralizing event may therefore be modelled, based on the transfer of chemical components reflected in the succession of mineral reactions. Such an approach has applications to comparable polyphase mineralization sequences, in which an understanding of fluid evolution patterns may greatly assist in the development of genetic models for mineral deposits. Solid-state diffusion and grain-boundary diffusion are considered to be the dominant mechanisms for short-range mass transport, whereas diffusion of ionic and complex species through the fluid is considered to be of major importance in long-range mass transport.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Behr, H.J., Horn, E.E., Frentzel-Beyme, K. and Reutel, C. (1987) Fluid inclusion characteristics of the Variscan and post-Variscan mineralizing fluids in the Federal Republic of Germany. Chem. Geol., 61, 273-85.CrossRefGoogle Scholar
Bente, K. and Doering, T. (1993) Solid-state diffusion in sphalerites: an experimental verification of the chalcopyrite disease. Eur. J. Mineral., 5, 465—78.CrossRefGoogle Scholar
Bente, K. and Doering, T. (1995) Experimental studies on the solid state diffusion of Cu and In in ZnS and on ‘disease’, DIS (Diffusion Induced Segregations), in sphalerite and their geological applications. Mineral. Petrol., 53, 285305.CrossRefGoogle Scholar
Birchenall, C.E. (1974) Diffusion in sulfides. In Geochemical Transport and Kinetics (Hofmann, A.W., Giletti, B.J., Yoder, H.S., Jr, and Yund, R.A., eds.), Carnegie Institution of Washington, Publication 634, 53-9.Google Scholar
Boctor, N.Z. and Brady, I.M. (1980) Interdiffusion of S and Se in tiemannite. Carnegie Inst. Washington Year Book, 78, 580-2.Google Scholar
Boiron, M.C., Cathelineau, M., Dubessy, J. and Bastoul, A.M., (1990) Fluids in Hercynian Au veins from the French Variscan belt. Mineral. Mag., 54, 231-43.CrossRefGoogle Scholar
Couto, H., Roger, G., Moëlo, Y. and Bril, H. (1990) Le district à antimoine-or Durico-Beirao (Portugal): évolution paragénétique et g6ochimique; implications m6tallog6niques. Mineral. Dep., 25, 69—81.CrossRefGoogle Scholar
Fenchel, W., Gies, H., Gleichmann, H.D., Helmind, W., Hentschel, H., Heyl, K.E., HiJttenhain, H., Langenbach, U., Lippert, H.J., Luznat, M., Meyer, W., Pahl, A., Rao, M.S., Reichenbach, R., Stadler, G., Vogler, H. and Walther, H.J. (1985) Die Sideriterzgänge im Siegerland-Wied-Distrikt. Geolog. Jahrb. Reihe D, 77, 1-517.Google Scholar
Franke, W. and Oncken, O. (1990) Geodynamic evolution of the North-Central Variscides - a comic strip. In The European Geotraverse: Integrative Studies, European Science Foundation, Strasbourg, 187-94.Google Scholar
Grant, J.A. (1986) The isocon diagram - a simple solution to Gresen's equation for metasomatic alteration. Econ. Geol., 81, 1976-82.CrossRefGoogle Scholar
Gresens, R.L. (1967) Composition-volume relationships of metasomatism. Chem. Geol., 2, 954—71.CrossRefGoogle Scholar
Hein, U.F. (1993) Synmetamorphic Variscan siderite mineralization of the Rhenish Massif, Central Europe. Mineral. Mag., 57, 451—67.CrossRefGoogle Scholar
Koenigswald, W., von and Meyer, W. (1994) Erdgeschichte im Rheinland. Fossilien und Gesteine aus 400 Millionen Jahren. Pfeil-Verlag, München, 240 pp.Google Scholar
Krupp, R.E. (1988) Solubility of stibnite in hydrogen sulfide solutions, speciation, and equilibrium con-stants, from 25 to 350°. Geochim. Cosmochim. Acta, 52, 3005-3015.CrossRefGoogle Scholar
Lebas, G. and Le Bihan, M.T. (1976) Etude chimique et structurale d'un sulfure naturel: la zinckénite. Bull. Soc. Fr. Mineral. Cristallogr., 99, 351-60.Google Scholar
Makovicky, E. (1985) The building principles and classification of sulphosalts based on the SnS archetype. Fortschr. Mineral., 63, 45—89.Google Scholar
Makovicky, E. (1989) Modular classification of sulphosalts - current status. Definition and applica-tion of homologous series. Neues Jahrb. Mineral. Abh., 160, 269-97.Google Scholar
Meyer, W. (1965) Gliederung und Altersstellung des Unterdevons südlich der Siegener Hauptüberschiebung in der Stidost-Eifel und im Westerwald (Rheinisches Schiefergebirge). Max-Richter-Festschr∼ft, Clausthal-Zellerfeld, 35-47.Google Scholar
Moëlo, Y., Robert, J.F. and Picot, P. (1988) Symplectite jamesonite-stibine de la mine d'antimoine de Fecunda (district du Val de Ribes, Pyrénées catalanes). Bull. Mineral., 111, 451-5.Google Scholar
Munoz, M., Courjault-Rade, P. and Tollon, F. (1992) The massive stibnite veins of the French Paleozoic basement: a metallogenetic marker of Late Variscan brittle extension. Terra Nova, 4, 171—7.CrossRefGoogle Scholar
Ni Wen, N., Ashworth, J.R. and Ixer, R.A. (1991) Evidence for the mechanism of the reaction producing a bournonite-galena symplectite from meneghinite. Mineral. Mag., 55, 153—8.CrossRefGoogle Scholar
Oncken, O. (1984) Zusammenhäinge in der Strukturgenese des Rheinischen Schiefergebirges. Geol. Rdsch., 73, 619-49.CrossRefGoogle Scholar
Ortega, L. and Vindel, E. (1995) Evolution of ore-forming fluids associated with late Hercynian antimony deposits in Central/Western Spain: case study of Marl Rosa and E1 Juncalón. Eur. J. Mineral., 7, 655-73.CrossRefGoogle Scholar
Perichaud, J.J. (1980) L'antimoine, ses minerals et ses gisements. Synthese gitologique sur les gisements du Massif Central francais. Chron. Rech. Min., 456, 1-64.Google Scholar
Smith, P.P.K. (1986) Direct imaging of tunnel cations in zinkenite by high-resolution electron microscopy. Amer. Mineral., 71, 194-201.Google Scholar
Spycher, N.F. and Reed, M.H. (1989) As(III) and Sb(III) sulfide complexes: An evaluation of stoichiometry and stability from existing experimental data. Geochim. Cosmochim. Acta, 53, 2185—94.CrossRefGoogle Scholar
Wagner, T. (1996) Die Antimon-Mineralisation der Grube Apollo im Siegerland-Wieder Spateisenbezirk. Unpublished Diploma Thesis, Univ. Wüirzburg, 176 PP.Google Scholar
Wagner, T. and Cook, N.J. (1996) Bismuth-antimony sulfosalts from siderite-hosted vein mineralization, Apollo mine, Siegerland, FRG. Neues Jahrb. Mineral. Abh., 171, 135-53.Google Scholar
Walther, H.W. (1982) Die varistische Lagerstättenbildung im westlichen Mitteleuropa. Z. dt. geol. Ges., 133, 667-98.Google Scholar
Weber, K. and Behr, H.J. (1983) Geodynamic interpretation of the Mid-European Variscides. In Intracontinental Fold Belts (Martin, H. and Eder, F.W., eds). Springer Verlag, Berlin-Heidelberg, 427-59.CrossRefGoogle Scholar