Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T18:23:54.881Z Has data issue: false hasContentIssue false

The Minastira peraluminous granite, Puno, southeastern Peru: a quenched, hypabyssal intrusion recording magma commingling and mixing

Published online by Cambridge University Press:  05 July 2018

Daniel J. Kontak
Affiliation:
Department of Geological Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6
Alan H. Clark
Affiliation:
Department of Geological Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6

Abstract

The Minastira granite, a c. 25 Ma subvolcanic plug of fine-grained granitic rock in the Cordillera Oriental of SE Peru, has preserved textures indicative of a history involving mixing of at least two magmas, a volumetrically dominant felsic component and a less voluminous mafic one. The felsic component is represented by variably fractured, altered and embayed crystals of quartz, feldspar, biotite with minor coarsegrained melt- and fluid-inclusion rich apatite, and possible cordierite (now a pseudomorphous Fe-Mg phase), whereas the mafic component is represented by calcic plagioclase. The process of magma mixing is reflected by: (1) ubiquitous sieved-textured plagioclase with complex textural relationships; (2) a large range in plagioclase compositions with reversals and spike patterns in profiles; (3) embayed and internally fractured (thermal shock?) quartz; (4) the rare occurrence of pyroxene coronas on quartz; and (5) textures within biotite suggestive of its incipient breakdown. The lack of mafic enclaves indicates that physico-chemical conditions of the mixing were conducive to homogenization (i.e. chemical diffusion) and a superficially homogeneous rock is now observed. The association of glomeroclasts of crystals originating from both the mafic and felsic end members and a quenched quartz-feldspar matrix indicate that the mixing occurred in an underlying magma chamber.

Type
Petrology
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Present address: Nova Scotia Department of Natural Resources, P.O. Box 698, Halifax, Nova Scotia, Canada B3J 2T9.

References

Allen, P.L. and Barr, S.M. (1983) The Ellison Lake pluton: a cordierite-bearing monzogranitic intrusive body in southwestern Nova Scotia. Canad. Mineral., 21, 583-90.Google Scholar
Anderson, A.T. (1976) Magma mixing: petrological process and volcanological tool. J. Volcan. Geoth. Res., 1, 333.CrossRefGoogle Scholar
Andersson, U.B. and Eklund, O. (1994) Cellular plagioclase intergrowths as a result of crystal-magma mixing in the Proterozoie Åland rapakivi batholith, SW Finland. Contrib. Mineral Petrol., 117, 124-36.CrossRefGoogle Scholar
Bailey, S.W. (1984) Crystal chemistry of the true micas. In Micas (Bailey, S. W., ed.). Amer. Mineral, 13, 1360.Google Scholar
Best, M.G. and Christiansen, E.H. (1997) Origin of broken phenocrysts in ash-flow tufts. Geol Soc. Amer. Bull., 109, 6373.2.3.CO;2>CrossRefGoogle Scholar
Blake, S. and Campbell, I.H. (1986) The dynamics of magma-mixing during flow in volcanic conduits. Contrib. Mineral Petrol., 94, 7281.CrossRefGoogle Scholar
Blake, S., Wilson, C.J.N., Smith, I.E.M. and Walker, G.P.L (1992) Petrology and dynamics of the Waimihia mixed magma eruption, Taupo Volcano, New Zealand. J. Geol Soc. Lon., 149, 193207.CrossRefGoogle Scholar
Castro, A., Moreno-Ventas, I., and de la Rosa, J.D. (1991) H-type (hybrid) granitoids: a proposed revision of the granite-type classification and nomenclature. Earth Sci. Rev., 31, 237-53.CrossRefGoogle Scholar
Caslro, A., de la Rosa, J.D. and Stephens, W.E. (1990) Magma mixing in the subvolcanic environment: petrology of the Gerena interaction zone near Seville, Spain. Contrib. Mineral PetroL, 105, 9-26.Google Scholar
Clark, A.H., Palma, V.V., Archibald, D.A., Farrar, E. Arenas, M.J. (1983) Occurrence and age of tin mineralization in the Cordillera Oriental, southern Peru. Econ. Geol., 70, 514-20.CrossRefGoogle Scholar
Clark, A.H., Kontak, D.J. and Farrar, E. (1984) A comparative study of the metallogenetic and geochronological relationships in the northern part of the Central Andean tin belt, SE Peru and NW Bolivia. In Proceedings Sixth Quadrennial LA.G.O.D. Symposium. E. Schweizerbart'sche Verlags, Stuttgart, Germany, 269-79.Google Scholar
Clark, A.H., Farrar, E., Kontak, D.J., Langridge, R.J., Arenas, M.J., France, L.J., McBride, S.L., Woodman, P.L., Wasteneys, H.A., Sandeman, H.A. and Archibald, D.A. (1990a): Geologic and geochrono-logic constraints on the metallogenic evolution of the Andes of southeastern Peru. Econ. Geol., 85, 1520-83.CrossRefGoogle Scholar
Clark, A.H., Kontak, D.J. and Farrar, E. (1990b) The San Judas Tadeo W (-Mo-Au) deposit: Permian lithophile metal mineralization in southeastern Peru. Econ. Geol., 85, 1651-68.CrossRefGoogle Scholar
Clarke, D.B. (1995) Cordierite in felsic igneous rocks: a synthesis. Mineral. Mag., 59, 311-25.CrossRefGoogle Scholar
Clemens, J.D. and Wall, V.J. (1981) Origin and crystallization of some peraluminous (S-type) granitic magmas. Canad. Mineral, 19, 111—32.Google Scholar
De'Lemos, R.S. (1992) Magma-mingling and melt modification between granitic pipes and host diorite, Guernsey, Channel Islands. J. Geol Soc. Lon., 149, 709-20.CrossRefGoogle Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (1966) An Introduction to the Rock-forming Minerals. Longman, London, 528 p.Google Scholar
Dostal, J., Zentilli, M., Caelles, J.C. and Clark, A.H. (1977) Geochemistry and origin of volcanic rocks of the Andes (26°-28° S). Contrib. Mineral Petrol., 63, 267-76.CrossRefGoogle Scholar
Eichelberger, J.C. (1975) Origin of andesite and dacite: evidence of mixing at Glass Mountain in California and at other cireum-Pacific volcanoes. Bull. Geol Soc. Amer., 86, 1381-91.2.0.CO;2>CrossRefGoogle Scholar
Eichelberger, J.C. (1978) Andesites in island arcs and continental margins: relationship to crustal evolu-tion. Bull. Volcan., 41, 480500.CrossRefGoogle Scholar
Feeley, T.C. and Grunder, A.L. (1991) Mantle contribution to the evolution of Middle Tertiary silicic magmatism during early stages of extension: the Egan Range volcanic complex, east-central Nevada. Contrib. Mineral Petrol., 106, 154-69.CrossRefGoogle Scholar
Fryer, B.J. (1977) Rare-earth evidence in iron formation for changing Preeambrian oxidation states. Geochim. Cosmochim. Acta, 41, 361—7.CrossRefGoogle Scholar
Gerlach, D.C. and Groves, T.L. (1982) Petrology of Medicine Lake Highland volcanies: Characterization of endmembers of magma mixing. Contrib. Mineral Petrol., 80, 147-59.CrossRefGoogle Scholar
Gourgaud, A., Fichaut, M. and Joron, J.L. (1989) Magmatology of Mt. Pelée (Martinique, F.W.I.). I: Magma mixing and triggering of the 1902 and 1929 Pelean nuées ardentes. J. Volcan. Geoth. Res., 38, 143-69.CrossRefGoogle Scholar
Gourgaud, A. and Villemant, B. (1992) Evolution of magma mixing in an alkaline suite: the Grande Cascade sequence (Monts-Dore, French Massif Central). Geochemical modelling. J. Volcan. Geoth. Res., 52, 255-75.CrossRefGoogle Scholar
Haslam, H.W. (1983) An isotropic alteration product of cordierite. Mineral. Mag., 47, 238-40.CrossRefGoogle Scholar
Injoque, J., Miranda, C., Carlier, G., Sologuren, W. and Tijero, L. (1983) Evidencia de basamento Pre-Cambriano en la región Inchupalla - Puno. Boletin de la Sociedad Geológica del Perú, No. 70, 25-8.Google Scholar
Ishihara, S. (1977) The magnetite-series and ilmenite-series granitic rocks. Mining Geology, 27, 293—305.Google Scholar
Kawamoto, T. (1992) Dusty and honeycomb plagio-clase: indicators of processes in the Ucbino stratified magma chamber, Izu Peninsula, Japan. J. Volcan. Geoth. Res., 49, 191208.CrossRefGoogle Scholar
Kontak, D.J. (1985) The magmatic and metallogenetic evolution of a craton-orogen interface: the Cordillera de Carabaya, Central Andes, S.E. Peru. Unpubl. Ph.D. thesis, Queen's University, Kingston, Ontario, 714 p.Google Scholar
Kontak, D.J., Clark, A.H. (1988) Exploration criteria for tin and tungsten mineralization in the Cordillera Oriental of southeastern Peru. In Granite-Related Mineral Deposits (Taylor, R. P. and Strong, D. F., eds.), Canadian Institute of Mining and Metallurgy, Special Volume 39, 157-69.Google Scholar
Kontak, D.J., Clark, A.H. and Farrar, E. (1984) The magmatie evolution of the Cordillera Oriental, southeastern Peru. In Andean Magmatism: Chemical and Isotopic Constraints (Harmon, R. S. and Barreiro, B. A., eds.), Nantwich, Shiva Publishing Ltd., 203-19.CrossRefGoogle Scholar
Kontak, D.J., Clark, A.H., Farrar, E. and Strong, D.F. (1985) The rift-associated Permo-Triassic magma-tism of the Eastern Cordillera: A precursor to the Andean orogeny. In Magmatism at a Plate Edge: The Peruvian Andes (Pitcher, W. S., Atherton, M. P., Cobbing, E. J. and Beckindale, R. D., eds.), Blackie & Sons, Glasgow, 3644.CrossRefGoogle Scholar
Kontak, D.J., Clark, A.H., Farrar, E., Pearce, T.H., Strong, D.F. and Baadsgaard, H. (1986) Petrogenesis of a Neogene shoshonite suite, Cerro Moromoroni, Puno, S.E. Peru. Canad. Mineral., 24, 117-35.Google Scholar
Kontak, D.J., Clark, A.H., Farrar, E., Archibald, D.A. and Baadsgaard, H. (1987) Geochronologic data for Tertiary granites of the southeast Peru segment of the central Andean tin belt. Econ. Geol., 82, 1611-8.CrossRefGoogle Scholar
Kontak, D.J., Clark, A.H., Farrar, E., Archibald, D.A. and Baadsgaard, H. (1990) Late Paleozoic-Early Mesozoic magmatism in the Cordillera de Carabaya, Puno, southeastern Peru: Geochronology and petrochemistry. J. South American Earth Sciences, 3, 213-30.CrossRefGoogle Scholar
Laubacher, G. (1978) Géologie de la Cordillbre Orientale et l'Altiplano au nord et au nor-ouest du Lac Titicaca (Pérou). Unpubl. Ph.D. thesis, ORSTOM, Paris, 95, 217 p.Google Scholar
Lofgren, G. and Norris, P.N. (1981) Experimental duplication of plagioclase sieve and overgrowth textures. (Abstract) Geological Society America Abstracts with Program, 13, 498.Google Scholar
London, D. (1992) Phosphorous in S-type magmas: the P2O5 content of feldspars from peraluminous granites, pegmatites and rhyolites. Amer. Mineral., 77, 126-45.Google Scholar
London, D., Morgan, G.B. VI, Babb, H.A. and Loomis, J.L. (1993) Behaviour and effects of phosphorus in the system Na2O-K2O-Al2Oa-SiO2-P2Os-H2O at 200 MPa (H2O). Contrib. Mineral. Petrol., 113, 450-65.CrossRefGoogle Scholar
MacDonald, G.A. and Katsura, T. (1965) Eruption of Lassen Peak, Cascade Range, California, in 1915: Example of mixed magmas. Bull. Geol. Soc. Amer., 76, 475482.CrossRefGoogle Scholar
Maillet, L.A. and Clarke, D.B. (1985) Cordierite in the peraluminous granites of the Meguma Zone, Nova Scotia, Canada. Mineral. Mag., 49, 695702.CrossRefGoogle Scholar
Maury, C., Clocchiatti, R., Coulon, C., D'Arco, P. and Westercamp, D. (1985) Signification du grenat et de la cordiérite dans les laves du Sud-Ouest martini-quais. Bullétin de Minéralogie, 108, 63—79.CrossRefGoogle Scholar
Muecke, G.K. and Clarke, D.B. (1981) Geochemical evolution of the South Mountain batholith, Nova Scotia: rare earth element evidence. Canad. Mineral., 19, 133-46.Google Scholar
Nixon, G. (1988) Petrology of the younger andesites and dacites of Iztaccihatl volcano, Mexico: II. Chemical stratigraphy, magma mixing and the composition of basaltic liquid influx. J. Petrol., 29, 265-303.CrossRefGoogle Scholar
O'Brien, H.E., Irving, A.J. and MeCallum, I.S. (1988) Complex zoning and resorption of phenocrysts in mixed potassic marie magmas of the Highwood Mountains, Montana. Amer. Mineral., 73, 1007—24.Google Scholar
Palma, V.V. (1981) The San Rafael tin-copper deposit, SE Peru. Unpublished M.Sc. thesis, Queen's University, Kingston, Ontario, 235 p.Google Scholar
Pichavant, M., Kontak, D.J., Valencia Herrera, J. and Clark, A.H. (1988a) The Miocene-Pliocene Maeusani volcanics, SE Peru. I Mineralogy and magmatic evolution of a two-mica aluminosilieate-bearing ignimbrite suite. Contrib. Mineral. Petrol., 100, 300-24.CrossRefGoogle Scholar
Pichavant, M., Kontak, D.J., Briqueu, L., Valencia Herrera, J. and Clark, A.H. (1988b) The Miocene-Pliocene Macusani volcanics, SE Peru. II Geochemistry and origin of a felsic peraluminous magma. Contrib. Mineral. Petrol., 100, 325-38.CrossRefGoogle Scholar
Pichavant, M., Montel, J.M., and Richard, L.R. (1992) Apatite solubility in peraluminous liquids: experimental data and an extension of the Harrison-Watson model. Geochim. Cosmochim. Acta, 56, 3855—61.CrossRefGoogle Scholar
Pitcher, W.S., Atherton, M.P., Cobbing, E.J. and Beckinsale, R.D. (eds.) (1985): Magmatism at a Plate Edge. Blaekie and Sons Ltd.CrossRefGoogle Scholar
Sakuyama, M. (1978) Petrographic evidence of magma mixing in Shirouma-Oike Volcano, Japan. Bull. Volcan., 41, 501-12.CrossRefGoogle Scholar
Sandeman, H.A. (1995) Lithostratigraphy, petrology and geochronology of the Crucero Supergroup, Puno, SE Peru: implications for the Cenozoic geodynamic evolution of the southern Peruvian Andes. Unpubl. PhD thesis, Queen's University, Kingston, Ontario, 382 pp.Google Scholar
Sandeman, H.A., Clark, A.H. and Farrar, E. (1995) An integrated tectono-magmatic model for the evolution of the southern Peruvian Andes (13-20∼ since 55 Ma. International Geology Reviews, 37, 1039-73.CrossRefGoogle Scholar
Sandeman, H.A., Clark, A.H., Farrar, E. and Arroyo, G. (1996a) The Crucero Supergroup, Puno Department, SE Peru: (i) lilthostratigraphy, petrology and 40Ar/39Ar geochronology of the Picotani Group. J. South American Earth Sciences (submitted).CrossRefGoogle Scholar
Sandeman, H.A., Clark, A.H., Farrar, E. and Arroyo, G. (1996b) The Crucero Supergroup, Puno Department, SE Peru: (i) lilthostratigraphy, petrology and 40Ar/39Ar geochronology of the Quenamari Group. J. South American Earth Sciences (submitted).CrossRefGoogle Scholar
Sato, H. (1975) Diffusion coronas around quartz xenocrysts in andesites and basalts from Tertiary volcanic region in northeastern Shikoku, Japan. Contrib. Mineral Petrol., 50, 40-64.CrossRefGoogle Scholar
Seaman, S.J. and Ramsey, P.C. (1992) Effects of magma mingling in the granites of Mount Desert Island, Maine. J. Geol., 100, 395-409.CrossRefGoogle Scholar
Smith, A.L. and Carmichael, I.S.E. (1968) Quaternary lavas from the southern Cascades, western U.S.A. Contrib. Mineral Petrol., 19, 212-38.CrossRefGoogle Scholar
Sparks, R.S.J. and Marshall, L.A. (1986) Thermal and mechanical constraints on mixing between mafic and silicic magmas. J. Volcan. Geoth. Res., 29, 99-124.CrossRefGoogle Scholar
Stimac, J.A. and Pearce, T.H. (1992) Textural evidence of mafic-felsic magma interaction in dacitic lavas, Clear Lake, California.. Amer. Mineral., 77, 795-809.Google Scholar
Vernon, R.H. (1983) Restite, xenoliths and micrograni- toid enclaves in granites. Journal Proceedings Royal Society of New South Wales, 116, 77-103.Google Scholar
Vernon, R.H. (1990) Crystallization and hybridism in microgranitoid enclaves: Mierostruetural evidence. J. Geophys. Res., 95, 17849-59.CrossRefGoogle Scholar
Vogel, T.A., Ryerson, F.J., Noble, D.C. and Younker, L.W. (1987) Limits to magma mixing based on chemistry and mineralogy of pumice fragments erupted from a chemically zoned magma body. J. Geol., 95, 659-70.CrossRefGoogle Scholar
Walker, G.P.L. and Skelhorn, R.R. (1966) Some associations of acid and basic igneous rocks. Earth-Science Reviews, 2, 93109.CrossRefGoogle Scholar
White, A.J.R. and Chappell, B.W. (1983) Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia. In Circum-Pacific Granitoid Terranes (Roddick, J. A., ed.), Geological Society of America Memoir 159, 2134.CrossRefGoogle Scholar
Wiebe, R.A. (1973) Relations between coexisting basaltic and granitic magmas in a composite dike. Amer. J. Sci., 273, 130-51.CrossRefGoogle Scholar
Wiebe, R.A. (1979) Commingling of contrasted magmas in the plutonic environment: examples from the Nain Anorthositic Complex. J. Geol., 88, 197-209.CrossRefGoogle Scholar
Wiebe, R.A. (1992) Basaltic injections into floored silicic magma chambers. Trans. Amer. Geophys. Union, 74, No. 1, 1-3.Google Scholar
Yamamura, B. (1991) The Palca 11 tungsten deposit and associated granitoid rocks, Choquene district, Puno, southeastern Peru. Unpublished M∼Sc. thesis, Queen's University, Kingston, Ontario, Canada, 255 p.Google Scholar
Wyborn, D., Chappell, B.W. and Johnson, R.M. (1981) Three S-type volcanic suites from the Lachlan Fold Belt, Southeast Australia. J. Geophys. Res., 86, 10335-48.CrossRefGoogle Scholar