Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T07:00:13.439Z Has data issue: false hasContentIssue false

Mg-rich dumortierite in cordierite-orthoamphibole-bearing rocks from the high-grade Bamble Sector, south Norway

Published online by Cambridge University Press:  05 July 2018

Diederik Visser
Affiliation:
Department of Petrology and Experimental Petrology, Institute of Earth Sciences, University of Utrecht, P.O. Box 80.021, 3508 TA Utrecht, The Netherlands
Antony Senior
Affiliation:
Department of Petrology and Experimental Petrology, Institute of Earth Sciences, University of Utrecht, P.O. Box 80.021, 3508 TA Utrecht, The Netherlands

Abstract

Dumortierite is described from several occurrences of cordierite-orthoamphibole-bearing rocks in the upper-amphibolite facies area of the Bamble Sector, south Norway. Dumortierite occurs with chlorite, muscovite and quartz in late M4 alteration zones or aggregates after M3, peak-metamorphic cordierite and garnet and early M4 vein-cordierite, and intergrown with or replacing orthoamphibole. Late M4P-T conditions, which are interpreted as conditions of dumortierite formation, are estimated from the associated late M4 kyanite-andalusite-chlorite-quartz assemblage and Mg-Fe exchange geothermometry to be 500 ± 50 °C and 3–4 kbar. Retrogression of M3 mineral assemblages is initiated by influx of fluids with XCO2 of 0.3–0.4 during early M4 followed by more water-rich fluids during late M4. Late M4 fluids may show local variations in alkalis and boron. The dumortierites are the most Mg-rich (2.23–3.42 wt. % MgO) ever reported, and contain 0.00–2.05 wt.% TiO2, 0.00–1.08 wt.% Fe2O3, 29.62–32.42 wt.% SiO2 and 55.20–59.71 wt.% Al2O3. Al is the most likely substituent for Si, which shows a minor deficiency at the tetrahedral sites in most dumortierites. The major variations in the mineral chemistry can be described by the coupled substitutions Mg + Ti = 2AlVI, 3Mg = 2AlVI and possibly Mg + H = AlVI. Favoured by low ƒO2 prevailing conditions a significant part of total iron in dumortierites at one locality is present as Fe2+ giving evidence for the Fe2+ + SiIV = AlIV + AlVI tschermakite substitution. FeMg−1 substitution is considered to be limited. Ti-rich dumortierites coexist with rutile, ilmenite or titaniferous magnetite. The development of dumortierite from orthoamphibole correlates with an observed decrease of Al, Mg and Na and increase of Si and Fe in orthoamphibole towards dumortierite.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, K., Mielke, H., and Povondra, P. (1972) On the enrichment of tourmaline in metamorphic sediments of the Arzberg Series, W. Germany (NE-Bavaria). Neues Jahrb. Mineral., Mh., 209-19.Google Scholar
Alexander, V. D. Griffen, D. T., and Martin, T. J. (1986) Crystal chemistry of some Fe- and Ti-poor dumortierites. Am. Mineral., 71, 786–94.Google Scholar
Armbruster, Th., Schreyer, W., and Hoefs, J. (1982) Very high CO2-cordierite from Norwegian Lapland: Mineralogy, petrology, and carbon isotopes. Contrib. Mineral. Petrol., 81, 262–7.CrossRefGoogle Scholar
Beukes, G. J., Slabbert, M. J., de Bruiyn, H., Botha, B. J. V., Schoch, A. E., and van der Westhuizen, W. A. (1987) Ti-dumortierite from the Keimocsarea, Namaqua mobile belt. South Africa. Neues Jahrb. Mineral., Abh., 157, 303–18.Google Scholar
Black, P. M. (1973) Dumortierite from Karikari peninsula: a first record in New Zealand. Mineral. Mag., 39, 245.CrossRefGoogle Scholar
Bugge, J. A. W. (1943) Geological and pctrographical investigations in the Kongsberg-Bamble Formation. Norges Geol. Unders., 160, 150 pp.Google Scholar
Claringbull, G. F. and Hey, M. H. (1958) New data for dumortierite. Mineral. Mag., 31, 901–7.Google Scholar
Christophe-Michel-Levy, M., Enberger, A. and Sandréa, A. (1959) Matériaux pour la minéralogie de Madgascar. II. —La Dumortiérite de Riampotsy. Bull. Soc. jr. Minéral. Crystallogr., 82, 77–9.Google Scholar
Feenstra, A. (1985) Metamorphism of bauxites on Naxos, Greece. Geol. Ultraiectina 39, 206 pp.Google Scholar
Field, D. and Clough, P. W. L. (1976) K/Rb ratios and metasomatism in metabasitcs from a Precambrian amphibolite-granulitc transition zone. Geol. Soc. London, 132, 277–88.CrossRefGoogle Scholar
Finlay, G. I. (1907) On an occurrence of corundum and dumortierite in pegmatite in Colorado. Geol., 15, 479–84.Google Scholar
Golovastikov, N. I. (1965) The crystal structure of dumortierite. Sov. Phys.-Doki, 10, 493–5.Google Scholar
Gonnard, M. F. (1881) Note sur l'existence d'une espèce minérale nouvelle, la dumortiérite dans le gneiss de Beaunan, au-dessus des anciens aqucducs gallo-romains de la vallée de l'lzeron (Rhone). Bull. Soc. Mineral. Fr., 4, 2-8.Google Scholar
Graham, C. E. and Robertson, F. (1951) A new dumortierite locality from Montana. Am. Mineral., 36, 916–7.Google Scholar
Grambling, J. A. (1990) Internally-consistent geother-mometry and H2O barometry in metamorphic rocks: the example garnet-chlorite-quartz. Contrib. Mineral. Petrol., 105, 617–28.CrossRefGoogle Scholar
Grew, E. S. (1980) Sillimanite and ilmenite from high-grade metamorphic rocks of Antarctica and other areas. J. Petrol., 21, 3968.CrossRefGoogle Scholar
Henry, D. J. and Guidotti, C. V. (1985) Tourmaline as a petrogenetic indicator mineral: an example from the staurolite-grade metapelites of NW Maine. Am. Mineral, 70, 115.Google Scholar
Holdaway, M. I. (1971) Stability of andalusite and the aluminium silicate phase diagram. Am. J. Sci., 271, 97131.CrossRefGoogle Scholar
Huijsmans, J. P. P., Barton, M., and van Bergen, M. J. (1982) A pegmatite containing Fe-rich grandidierite, Ti-rich dumortierite and tourmaline from the Precambrian, high-grade metamorphic complex of Rogaland, S.W. Norway. Neues Jahrb. Mineral, Abh., 143, 249–61.Google Scholar
Johannes, W. and Schreyer, W. (1981) Experimental introduction of CO2 and H2O into Mg-cordierite. Am. J. Sci., 281, 299317.CrossRefGoogle Scholar
Kayupova, M. M. and Tilepov, Z. T. (1977) First find of dumortierite concretions. Acad. Sci. USSR, Dokl, Earth Sci., Sect., 235, 121–1.Google Scholar
Kerr, P. F. and Jenney, P. (1935) The dumortierite-andalusite mineralisation at Oreana, Nevada. Econ. Geol, 30, 287300.CrossRefGoogle Scholar
Kretz, R. (1983) Symbols for rock-forming minerals. Am. Mineral., 68, 227–79.Google Scholar
Lamb, R. C. (1981) Geochemical studies in Proterozoic high-grade gneiss terrain, Bamble Sector, south Norway. Unpubl. Ph.D. Thesis, University of Nottingham.Google Scholar
Lamb, R. C. Smalley, P. C., and Field, D. (1986) P-T conditions for the Arendal granulitcs, southern Norway: implications for the roles of P, T and CO2 in deep crustal LILE-depIetion. J. Metam. Geol, 4, 143–60.CrossRefGoogle Scholar
Moore, P. B. and Araki, T. (1978) Dumortierite, Si3B[Al6.750.25O17.25(OH)0.75]: a detailed structure analysis. Neues Jahrb. Mineral, Abh., 132, 231–41.Google Scholar
Moore, P. B. and Araki, T. (1979) Korncrupine: a detailed crystal- chemical study. Ibid. 134, 317-36.Google Scholar
Nijland, T. G. and Senior, A. (1991) Sveconorwegian granulite facies metamorphism of polyphase migmatites and basic dikes, south Norway. J. Geol, 99, 515–25.CrossRefGoogle Scholar
Robinson, P., Spear, F. S., Schumacher, J. C., Laird, J., Klein, C., Evans, B. W., and Doolan, B. L. (1982) Phase relations of metamorphic amphiboles: Natural occurrence and theory. In Amphiboles: Petrology and experimental phase relations. (Veblen, D. R. and Ribbe, P. H., cds.) Rev. Mineral, 9b, 1-227.CrossRefGoogle Scholar
Sabzehei, M. (1971) Dumortierite from Iran: a first record. Mineral. Mag., 38, 526–7.CrossRefGoogle Scholar
Schaller, W. T. (1905) Dumortierite. Am. J. Sci., 19, 211–24.CrossRefGoogle Scholar
Schreyer, W., Abraham, K. and Behr, H. J. (1975) Sapphirine and associated minerals from the korneru-pine rock of Waldheim, Saxony. Neues Jahrb. Mineral, Abh., 126, 127.Google Scholar
Seifert, F. and Schreyer, W. (1970) Lower temperature stability limit of Mg-cordierite in the range 1-7 kb water pressure: Aredetermination. Contrib. Mineral. Petrol, 27, 225–38.CrossRefGoogle Scholar
Starmer, I. C. (1985) The evolution of the south Norwegian Proterozoic as revealed by the major and mega-tectonics of the Kongsberg and Bamble Sectors. In The Deep Proterozoic Crust in the North Atlantic Provinces (Tobi, A. C. and Touret, J., eds.) NATO ASI series C 158 Reidel, Dordrecht, 259-91.CrossRefGoogle Scholar
Starmer, I. C. (1990) Rb-Sr systematics of a Gardar-age layered alkaline monzonite suite in southern Norway: a discussion. J. Geol, 98, 119–23.CrossRefGoogle Scholar
Takahata, H. and Uchiyama, K. (1985) Dumortierite-bearing argillaceous gneisses from the Abukuma metamorphic terrain, northeast Japan. Fac. Sci., Hokkaido Univ., Ser. IV, 21, 465-81.Google Scholar
Touret, J. (1979) Les roches à tourmaline-cordiérite-disthène de Bjordammen (Norvège méridionale) sont-elles liées a d'anciennes évaporites? Sci. Terre, 23, 95–7.Google Scholar
Visser, D. and Senior, A. (1990) Aluminous reaction textures in orthoamphibole-bearing rocks: the pressure-temperature evolution of the high-grade Proterozoic of the Bamble Sector, south Norway. Metam. Geol, 8, 231–46.CrossRefGoogle Scholar
Visser, D. Maijer, C., and Senior, A. (1990) Retrograde talc-kyanite-quartz assemblage from Bjordammen, Bamble Sector, south Norway. Abs. 19th Nordic Geol. Winter Meet., Geonytt, 17, 119.Google Scholar
Vrána, S. (1979) A polymetamorphic assemblage of grandidierite, kornerupine, Ti-rich dumortierite, tourmaline, sillimanite and garnet. Neues Jahrb. Mineral, Mh., 22-33.Google Scholar
Werding, G. and Schreyer, W. (1988) Synthetic dumor-tierites: Their PTX-dependent compositional variations in the system Al2O3-SiO2-B2O3-H2O. Fortschr. Mineral, 66, Beih. 1, 168.Google Scholar
Werding, G. and Schreyer, W. (1990) Synthetic dumortierite: its PTX- dependent compositional variations in the system Al2O3-B2O3-SiO2-H2O. Contrib. Mineral. Petrol, 105, 1124.CrossRefGoogle Scholar