Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-12-03T19:20:05.715Z Has data issue: false hasContentIssue false

Metamorphism of the Palaeozoic Cinco Villas Massif (Basque Pyrenees): Illite Crystallinity and Graphitization Degree

Published online by Cambridge University Press:  05 July 2018

A. Pesquera
Affiliation:
Dpto. de Mineralogía y Petrología, Universidad del Pais Vasco, Apdo. 644, Y8080, Bilbao, Spain
F. Velasco
Affiliation:
Dpto. de Mineralogía y Petrología, Universidad del Pais Vasco, Apdo. 644, Y8080, Bilbao, Spain

Abstract

The degree of metamorphism affecting the Devonian-Carboniferous rocks of the Palaeozoic Cinco Villas massif has been studied by (a) petrographic techniques, (b) illite crystallinity, and (c) degree of graphitization of the carbonaceous material. Some mineralogical differences have been found between the Devonian and Carboniferous rocks; paragonite and mixed-layer paragonite/muscovite, typical of anchimetamorphic areas, appear in the Devonian but are not found in the Carboniferous rocks. These are characterized by the local appearance of chloritoid, garnet, amphibole, epidote, andalusite and biotite, and the generalized presence of muscovite/chlorite. Illite crystallinity shows a metamorphic zonation (anchizone epizone) towards the granitic Aya massif, and a concentric pattern around the intrusive body.

The optical analysis shows that the first effects of the regional metamorphism began before the D2 deformation, reaching its paroxysm during this phase and continuing afterwards. The degree of graphitization evolves progressively with metamorphism, and this fact is reflected in an exponential relationship between d(002) and crystallinity Lc(002). The similarity in the degree of graphitization between homologous materials within and outside the Aya aureole suggests a similar kinetic factor for both the thermal and regional metamorphisms, or a similar duration time. This fact, as well as the distribution and relationship between the deformation and recrystallization of the minerals, suggests a syn-plutonic regional metamorphism developed at low pressures, in accordance with the value of the b0 parameter for the white micas, and probably a maximum temperature of about 500°C.

Type
Petrology and Geochemistry
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Autran, A., Fonteilles, M., and Guitard, G. (1970) Bull. Soc. Géol. Ft. 12, 673-731.CrossRefGoogle Scholar
Bailey, S.W. (1972) Clays Clay Minerals, 20, 381-8.CrossRefGoogle Scholar
Bailey, S.W. (1975) In Soil Components. 2, Inorganic Components (Gieseking, J. E., ed.). Springer Verlag, New York.Google Scholar
Bayliss, P. (1975) Can. Mineral. 13, 178-80.Google Scholar
Bertagnini, A., and Franceschelli, M. (1982) Neues Jahrb. Mineral. Mh. 11, 495-505.Google Scholar
Brindley, G.W. (1961) In The X-ray Identification and Crystal Structures of Clay Minerals (Brown, G., ed.). Mineral Soc., London. 242-96.Google Scholar
Campos, J. (1976) Thesis Doctoral. Univ. Bilbao.Google Scholar
Cipriani, C., Sassi, F.P., and Viterbo-Bassani, C. (1968) Rend. Soc. Ital. Mineral. Petrol 24, 3-37.Google Scholar
Dunoyer de Segonzac, G. (1969) MOrn. Serv. Carte GboL Als. Loft. (Strasbourg), 29.Google Scholar
Dunoyer de Segonzac, G. and Heddebaut, C. (1971) Bull. Serv. Carte Géol. Als. Lorr. 24-4. 277-90.CrossRefGoogle Scholar
Fischbach, D.B. (1971) In Chemistry and Physics of Carbon, 7 (Walker, P. L. Jr., ed.). Marcel Dekker, New York, 1-105.Google Scholar
Fonteilles, M. (1981) J. Fac. Sei. Univ. Tokyo, 20, 117- 79.Google Scholar
Foster, M.D. (1962) U.S. Geol. Surv. Prof. Paper, 414- A, 133.Google Scholar
French, B.M. (1964) Science, 146, 917-18.CrossRefGoogle Scholar
Frey, M. (1969) Contrib. Mineral. Petrol. 24, 63-5.CrossRefGoogle Scholar
Frey, M. (1978) J. Petrol. 19, 93-135.Google Scholar
Frey, M. Hunziker, J.C., Jager, E., and Stem, W.B. (1983) Contrib. Mineral. Petrol. 83, 185-97.CrossRefGoogle Scholar
Fujinuki, T., Katada, M., and Suzuki, K. (1974) J. Geol. Soc. Japan, 80, 619-25.CrossRefGoogle Scholar
Grew, E.S. (1974) J. Geol. 82, 50-73.CrossRefGoogle Scholar
Griffin, G.M. (1967) J. Sediment. Petrol. 37, 100-61..Google Scholar
Guidotti, C.V. (1984) In Micas. Reviews in Mineralogy, 13 (Bailey, S. W., ed.) (M.S.A.), 357-46..Google Scholar
Heddebaut, C. (1973) Thése (Univ. de Lille). 263 pp.Google Scholar
Islam, S., Hesse, R., and Chagnon, A. (1982) Can. Mineral. 20, 155-67.Google Scholar
Itaya, T. (198l) Lithos, 14, 215-24.CrossRefGoogle Scholar
lzawa, E. (1968) Geol. Soc. Japan J. 74, 427-32.Google Scholar
Juch, D. and Schafer, D. (1974) Pirineos, 111, 41-58.Google Scholar
Kisch, H.J. (1980) Eclogae Geol. Helv. 73, 753-77.Google Scholar
Kisch, H.J. (1983) In Diagenesis in Sediments and Sedimentary Rocks, 2. (Larsen, G. and Chilingar, G. V., eds.). Developments in Sedimentology 25B. Elsevier (Amsterdam). 289493.Google Scholar
Kornprobst, J., Bard, J.P., Briand, B., Cantagrel, J.M., Guitard, G., Kienast, J.R., Lasnier, B., Le Corre, C., and Santallier, D. (1980) 26th Cong. Geol. Int. Coll. C7, Géologie de la France. 161-89.Google Scholar
Krausse, H.F. (1974) Pirineos, 111, 69-96.Google Scholar
Kroll, H. and Ribbe, P.H. (1983) In Feldspar Mineralogy'. Reviews in Mineralogy 2 (Ribbe, P. H., ed.) M.S.A. 357-99.Google Scholar
Kubler, B. (1967) In Etages tectoniques. A la Baconnirre, Neuchfitel (Suisse), 105-21.Google Scholar
Kubler, B. (1968) Bull. Centre Rech. Pau-SNPA. 2, 385-97.Google Scholar
Landis, C.A. (1971) Contrib. Mineral. Petrol. 30, 34- 45.CrossRefGoogle Scholar
Naef, U., and Stern, W.B. (1982) Ibid. 79, 355-60.Google Scholar
Nieto, F. (1983) Thesis Doctoral (Univ. de Granada), 249 pp.Google Scholar
Otani, S., and Kimura, M. (1972) Carbon Fibre. Kundai- Henshu Press, 385 pp.Google Scholar
Pesquera, A. (1985) Thesis Doctoral (Univ. del Pals Vasco), 579 pp.Google Scholar
Requadt, H. (1974) Pirineos, 111, 109-27.Google Scholar
Requadt, H. Becket, G., Bless, M.J.M., Eickhoff, G., and Sanchez-Posada, L. C. (1977) Neues Jahrb. Geol. PalgiontoL Abh. 155 (1), 65-107.Google Scholar
Sassi, F.P., and Scolari, A. (1974) Contrib. Mineral. Petrol. 45, 143-52.CrossRefGoogle Scholar
Shengelia, D.M., Akhulediani, R.A., and Ketskhoveli, D.N. (1977) Doklady. 235, 132-4.Google Scholar
Srodon, J., and Eberl, D.D. (1984) In Micas. Reviews in Mineralogy 13 (S. W. Bailey, ed.), M.S.A. 495544.Google Scholar
Suwa, K., Mizutani, S., and Tsuzuki, Y. (1974) Mem. Geol. Soc. Japan, 11, 167-250.Google Scholar
Tagiri, M. (1981) J. Japan Assoc. Min. Petr. Econ. Geol. 76, 345-52.CrossRefGoogle Scholar
Tagiri, M. and Tsuboi, S. (1979) Ibid. 74, 47-56.Google Scholar
Velde, B. (1965) Am. Mineral 50, 436-49.Google Scholar
Velde, B. (1967) Contrib. Mineral. Petrol., 14, 250-8.CrossRefGoogle Scholar
Velde, B. (1978) Ibid. 66, 319-23.Google Scholar
Velde, B. and Hower, J. (1963) Am. Mineral. 48, 1239-54.Google Scholar
Weaver, C.E. (1961) In The Onachite Belt (Flawn, P. T. Jr. , Goldstein, A. Kink, P.B. and Weaver, C. E. , eds.). Univ. Texas Publ. 6120, 147-60.Google Scholar
Winkler, H.G.F. (1979) Petrogenesis of Metamorphic Rocks. Springer-Verlag, Berlin, 348 pp.Google Scholar
Zwart, H.J. (1962) Geol. Rundschau, 52, 38-65.CrossRefGoogle Scholar
Zwart, H. J. (1979) Leidse GeoL Mededel. 50, 1-74.Google Scholar