Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T17:50:43.914Z Has data issue: false hasContentIssue false

The Mesoarchean Amikoq Layered Complex of SW Greenland: Part 1. Constraints on the P–T evolution from igneous, metasomatic and metamorphic amphiboles

Published online by Cambridge University Press:  10 September 2020

Emil Aarestrup
Affiliation:
Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, 1165 København K, Denmark
Taus R. C. Jørgensen
Affiliation:
Mineral Exploration Research Centre, Harquail School of Earth Sciences and Goodman School of Mines, Laurentian University, Sudbury, ON, Canada
Paul E.B. Armitage
Affiliation:
Mkango Resources Ltd, 550 Burrard Street, Suite 2900, VancouverBC, Canada, V6C 0A3
Allen P. Nutman
Affiliation:
School of Earth, Atmospheric and Life Sciences, University of Wollongong, 2522, NSW, Australia
Ole Christiansen
Affiliation:
Kommune Kujalleq, Anders Olsensvej B 500, 3920Qaqortoq, Greenland
Kristoffer Szilas*
Affiliation:
Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, 1165 København K, Denmark
*
*Author for correspondence: Kristoffer Szilas, Email: [email protected]

Abstract

The metamorphic history of the Mesoarchean Amikoq Layered Complex within the Akia terrane of SW Greenland was characterised by electron microprobe mineral data and detailed petrography on 12 representative samples, integrated with zircon U–Pb geochronology and petrology. The complex intruded into a >3004 Ma supracrustal association now consisting of granoblastic metabasites with subordinate quartz-rich gneiss. Supracrustal host rocks contain a relict high-temperature assemblage of orthopyroxene–clinopyroxene (± pigeonite exsolution lamellae, exsolved at ~975–1010°C), which is interpreted to pre-date the Amikoq intrusion. Cumulate to granoblastic-textured rocks of the main Amikoq Layered Complex range modally from leuconorite to melanorite, orthopyroxenite to harzburgite/dunite and rare hornblende melagabbro. Observed mineralogy of main complex noritic lithologies is essentially relict igneous with orthopyroxene–biotite and hornblende–plagioclase thermometers yielding temperatures of ~800–1070°C. An anatectic zircon megacryst from a patchy quartzo–feldspathic leucosome hosted in an orthopyroxene-dominated Amikoq rock reflects local anatexis at peak metamorphic P–T conditions and yields an intrusion minimum age of 3004 ± 9 Ma. Field observations indicate local anatexis of orthopyroxene-dominated lithologies, possibly indicating a post-intrusion peak temperature of >900°C. The last preserved stages of retrogression are recorded in paragneiss plagioclase–garnet, biotite–garnet and host rock ilmenite–magnetite pairs (≤3 kbar and ~380–560°C).

The Amikoq Complex intruded a MORB-like crustal section and the former remained relatively undisturbed in terms of modal mineralogy. Preservation of igneous textures and mineralogy are related to an anhydrous, high-grade metamorphic history that essentially mimics igneous crystallisation conditions, whereas local high-strain zones acted as fluid pathways resulting in hydrous breakdown of igneous minerals. There is no evidence of equilibration of the intrusion at sub-amphibolite-facies conditions.

Type
Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Thomas Mueller

References

Adam, J. and Green, T. (2006) Trace element partitioning between mica-and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behaviour. Contributions to Mineralogy and Petrology, 152, 117. https://doi.org/10.1007/s00410-006-0085-4CrossRefGoogle Scholar
Aranovich, L.Y. and Podlesskii, K.K. (1983) The cordierite-garnet-sillimanite-quartz equilibrium: experiments and applications. Pp. 173198 in: Kinetics and Equilibrium in Mineral Reactions. Springer, New York. https://doi.org/10.1007/978-1-4612-5587-1_6CrossRefGoogle Scholar
Arculus, R.J. and Wills, K.J. (1980) The petrology of plutonic blocks and inclusions from the Lesser Antilles island arc. Journal of Petrology, 21, 743799. https://doi.org/10.1093/petrology/21.4.743CrossRefGoogle Scholar
Armitage (2009) PGE Exploration in the Fiskefjord License, Southern West Greenland (2008). NunaMinerals A/S company report. Archived as GEUS report file 100006. https://data.geus.dk/greenlanddb/webresources/dodex-report-file/released-report/100006Google Scholar
Armitage (2010) Exploration in the Amikoq sub-area of licence 2005/16 Fiskevandet, southern West Greenland (2009). NunaMinerals A/S company report. Archived as GEUS report file 22146. https://data.geus.dk/greenlanddb/webresources/dodex-report-file/released-report/22146Google Scholar
Barnes, S.J. and Roeder, P.L. (2001) The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology, 42, 22792302. https://doi.org/10.1093/petrology/42.12.2279CrossRefGoogle Scholar
Beard, J.S. and Lofgren, G.E. (1991) Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb. Journal of Petrology, 32, 365401. https://doi.org/10.1093/petrology/32.2.365CrossRefGoogle Scholar
Berndt, J. (2002) Differentiation of MOR basalt at 200 MPa: Experimental techniques and influence of H2O and $f_{{\rm O}_ 2}$on phase relations and liquid line of descent. Doctoral dissertation, Universität Hannover, Germany.Google Scholar
Bhattacharya, A., Mazumdar, A.C. and Sen, S.K. (1988) Fe-Mg mixing in cordierite; constraints from natural data and implications for cordierite-garnet geothermometry in granulites. American Mineralogist, 73, 338344.Google Scholar
Bonin, B. and Tatu, M. (2016) Cl-rich hydrous mafic mineral assemblages in the Highiș massif, Apuseni Mountains, Romania. Mineralogy and Petrology, 110, 447469. https://doi.org/10.1007/s00710-015-0419-xCrossRefGoogle Scholar
Clemens, J.D. and Vielzeuf, D. (1987) Constraints on melting and magma production in the crust. Earth and Planetary Science Letters, 86, 287306. https://doi.org/10.1016/0012-821X(87)90227-5CrossRefGoogle Scholar
Dasgupta, S., Sengupta, P., Guha, D. and Fukuoka, M. (1991) A refined garnet-biotite Fe−Mg exchange geothermometer and its application in amphibolites and granulites. Contributions to Mineralogy and Petrology, 109, 130137. https://doi.org/10.1007/BF00687206CrossRefGoogle Scholar
de Capitani, C. and Brown, T.H. (1987) The computation of chemical equilibrium in complex systems containing non-ideal solutions. Geochimica et Cosmochimica Acta, 51, 26392652. https://doi.org/10.1016/0016-7037(87)90145-1CrossRefGoogle Scholar
DeBari, S.M. and Coleman, R.G. (1989) Examination of the deep levels of an island arc: Evidence from the Tonsina ultramafic-mafic assemblage, Tonsina, Alaska. Journal of Geophysical Research: Solid Earth, 94, 43734391. https://doi.org/10.1029/JB094iB04p04373CrossRefGoogle Scholar
Dyck, B., Reno, B.L. and Kokfelt, T.F. (2015) The Majorqaq Belt: a record of Neoarchaean orogenesis during final assembly of the North Atlantic Craton, southern West Greenland. Lithos, 220, 253271. https://doi.org/10.1016/j.lithos.2015.01.024CrossRefGoogle Scholar
Dziggel, A., Kokfelt, T.F., Kolb, J., Kisters, A.F.M. and Reifenröther, R. (2017) Tectonic switches and the exhumation of deep-crustal granulites during Neoarchean terrane accretion in the area around Grædefjord, SW Greenland. Precambrian Research, 300, 223245. https://doi.org/10.1016/j.precamres.2017.07.027CrossRefGoogle Scholar
Eales, H.V. and Cawthorn, R.G. (1996) The Bushveld Complex. Pp. 181229 in: Developments in Petrology. Vol. 15. Elsevier. https://doi.org/10.1016/S0167-2894(96)80008-XGoogle Scholar
Essene, E.J. (1989) The current status of thermobarometry in metamorphic rocks. Geological Society, London, Special Publications, 43, 144. https://doi.org/10.1144/GSL.SP.1989.043.01.02CrossRefGoogle Scholar
Evans, B.W. (1977) Metamorphism of alpine peridotite and serpentinite. Annual Review of Earth and Planetary Sciences, 5, 397447.CrossRefGoogle Scholar
Evans, B.W. and Frost, B.R. (1976) Chrome-spinel in progressive metamorphism—a preliminary analysis. Pp. 959972 in: Chromium: its Physicochemical Behavior and Petrologic Significance. Pergamon, USA. https://doi.org/10.1016/B978-0-08-019954-2.50020-2CrossRefGoogle Scholar
Fettes, D. and Desmons, J. (editors) (2011) Metamorphic rocks: a Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Metamorphic Rocks. Cambridge University Press, UK.Google Scholar
Fleet, M.E. and Barnett, R.L. (1978) Al iv/Al vi partitioning in calciferous amphiboles from the Frood Mine, Sudbury, Ontario. The Canadian Mineralogist, 16, 527532.Google Scholar
Foslie, S. (1945) Hastingsites and amphiboles from the epidote-amphibolite facies. NGT, 25, 74.Google Scholar
Friend, C.R.L. and Nutman, A.P. (1994) Two Archaean granulite-facies metamorphic events in the Nuuk-Maniitsoq region, southern West Greenland: correlation with the Saglek block, Labrador. Journal of the Geological Society, 151, 421424. https://doi.org/10.1144/gsjgs.151.3.0421CrossRefGoogle Scholar
Friend, C.R. and Nutman, A.P. (2019) Tectono-stratigraphic terranes in Archaean gneiss complexes as evidence for plate tectonics: The Nuuk region, southern West Greenland. Gondwana Research, 72, 213237.CrossRefGoogle Scholar
Friend, C.R.L., Nutman, A.P. and McGregor, V.R. (1988) Late Archaean terrane accretion in the Godthåb region, southern West Greenland. Nature, 335, 535.CrossRefGoogle Scholar
Friend, C.R.L., Nutman, A.P., Baadsgaard, H., Kinny, P.D. and McGregor, V.R. (1996) Timing of late Archaean terrane assembly, crustal thickening and granite emplacement in the Nuuk region, southern West Greenland. Earth and Planetary Science Letters, 142, 353365. https://doi.org/10.1016/0012-821X(96)00118-5CrossRefGoogle Scholar
Frost, B.R. (1976) Limits to the assemblage forsterite-anorthite as inferred from peridotite hornfelses, Icicle Creek, Washington. American Mineralogist, 61, 732750.Google Scholar
Garde, A.A. (1989) Geological Map of Greenland, 1: 100 000, Fiskefjord 64 V. 1 Nord. Geological Survey of Greenland, Copenhagen.Google Scholar
Garde, A.A. (1990) Thermal granulite-facies metamorphism with diffuse retrogression in Archaean orthogneisses, Fiskefjord, southern West Greenland. Journal of Metamorphic Geology, 8, 663682. https://doi.org/10.1111/j.1525-1314.1990.tb00494.xCrossRefGoogle Scholar
Garde, A.A. (1997) Accretion and Evolution of an Archaean High-Grade Grey Gneiss–Amphibolite Complex: The Fiskefjord Area, Southern West Greenland. Geological Survey of Denmark and Greenland, Ministry of Environment and Energy, Copenhagen. Volume 177.Google Scholar
Garde, A.A. (2007) A mid-Archaean island arc complex in the eastern Akia terrane Godthåbsfjord southern West Greenland. Journal of the Geological Society, 164, 565579. https://doi.org/10.1144/0016-76492005-107CrossRefGoogle Scholar
Garde, A.A., Friend, C.R., Nutman, A.P. and Marker, M. (2000) Rapid maturation and stabilisation of middle Archaean continental crust: the Akia terrane, southern West Greenland. Bulletin of the Geological Society of Denmark, 47, 127.Google Scholar
Garde, A.A., Dyck, B., Esbensen, K.H., Johansson, L. and Möller, C. (2014) The Finnefjeld domain, Maniitsoq structure, West Greenland: Differential rheological features and mechanical homogenisation in response to impacting? Precambrian Research, 255, 791808. https://doi.org/10.1016/j.precamres.2014.06.022CrossRefGoogle Scholar
Gardiner, N.J., Kirkland, C.L., Hollis, J., Szilas, K., Steenfelt, A., Yakymchuk, C. and Heide-Jørgensen, H. (2019) Building Mesoarchaean crust upon Eoarchaean roots: the Akia Terrane, West Greenland. Contributions to Mineralogy and Petrology, 174, 20. https://doi.org/10.1007/s00410-019-1554-xCrossRefGoogle Scholar
Gilbert, M.C., Helz, R.T., Popp, R.K. and Spear, F.S. (1982) Experimental studies of amphibole stability. Pp. 228353 in: Amphiboles: Petrology and Experimental Phase Relations (Veblen, D.R. and Ribbe, P. H., editors). Reviews in Mineralogy, 98, Mineralogical Society of America, Washington DC.Google Scholar
Green, E.C.R., White, R.W., Diener, J.F.A., Powell, R., Holland, T.J.B. and Palin, R.M. (2016) Activity–composition relations for the calculation of partial melting equilibria in metabasic rocks. Journal of Metamorphic Geology, 34, 845869. https://doi.org/10.1111/jmg.12211CrossRefGoogle Scholar
Guotana, J.M., Morishita, T., Yamaguchi, R., Nishio, I., Tamura, A., Tani, K., Harigane, Y., Szilas, K. and Pearson, D.G. (2018) Contrasting Textural and Chemical Signatures of Chromitites in the Mesoarchaean Ulamertoq Peridotite Body, Southern West Greenland. Geosciences, 8, 328. https://doi.org/10.3390/geosciences8090328CrossRefGoogle Scholar
Harmer (2009) Report: Geological Consulting: Field Work for NunaMinerals 12. June – 2. July 2009. NunaMinerals A/S internal company report.Google Scholar
Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C. and Welch, M.D. (2012) Nomenclature of the amphibole supergroup. American Mineralogist, 97, 20312048. https://doi.org/10.2138/am.2012.4276CrossRefGoogle Scholar
Heaman, L.M. and LeCheminant, A.N. (1993) Paragenesis and U-Pb systematics of baddeleyite (ZrO2). Chemical Geology, 110, 95126. https://doi.org/10.1016/0009-2541(93)90249-ICrossRefGoogle Scholar
Helz, R.T. (1973) Phase relations of basalts in their melting range at PH2O= 5 kb as a function of oxygen fugacity: part I. Mafic phases. Journal of Petrology, 14, 249302. https://doi.org/10.1093/petrology/14.2.249CrossRefGoogle Scholar
Helz, R.T. (1979) Alkali exchange between hornblende and melt; a temperature-sensitive reaction. American Mineralogist, 64, 953965.Google Scholar
Hensen, B.J. (1977) Cordierite–garnet bearing assemblages as geothermometers and barometers in granulite facies terranes. Tectonophysics, 43, 7388. https://doi.org/10.1016/0040-1951(77)90006-3CrossRefGoogle Scholar
Himmelberg, G.R. and Loney, R.A. (1995) Characteristics and Petrogenesis of Alaskan-Type Ultramafic-Mafic Intrusions, Southeastern Alaska (Vol. 56). US Government Printing Office.Google Scholar
Hodges, K.V. and Spear, F.S. (1982) Geothermometry, geobarometry and the Al2SiO5 triple point at Mt. Moosilauke, New Hampshire. American Mineralogist, 67, 11181134.Google Scholar
Holdaway, M.J. and Lee, S.M. (1977) Fe-Mg cordierite stability in high-grade pelitic rocks based on experimental, theoretical, and natural observations. Contributions to Mineralogy and Petrology, 63, 175198. https://doi.org/10.1007/BF00398778CrossRefGoogle Scholar
Holland, T. and Blundy, J. (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116, 433447. https://doi.org/10.1007/BF00310910CrossRefGoogle Scholar
Holland, T.J.B. and Powell, R. (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 29, 333383. https://doi.org/10.1111/j.1525-1314.2010.00923.xGoogle Scholar
Huang, H., Fryer, B.J., Polat, A. and Pan, Y. (2014) Amphibole, plagioclase and clinopyroxene geochemistry of the Archean Fiskenæsset Complex at Majorqap qâva, southwestern Greenland: implications for Archean petrogenetic and geodynamic processes. Precambrian Research, 247, 6491. https://doi.org/10.1016/j.precamres.2014.03.021CrossRefGoogle Scholar
Hunter, R.H. (1996) Texture development in cumulate rocks. Pp. 77101 in: Developments in Petrology. Vol. 15. Elsevier. https://doi.org/10.1016/S0167-2894(96)80005-4Google Scholar
Ibarguchi, J.G. and Martinez, F.J. (1982) Petrology of garnet–cordierite–sillimanite gneisses from the El Tormes thermal dome, Iberian Hercynian foldbelt (W Spain). Contributions to Mineralogy and Petrology, 80, 1424. https://doi.org/10.1007/BF00376731CrossRefGoogle Scholar
Indares, A. and Martignole, J. (1985) Biotite–garnet geothermometry in the granulite facies: the influence of Ti and Al in biotite. American Mineralogist, 70, 272278.Google Scholar
Jagoutz, O., Müntener, O., Ulmer, P., Pettke, T., Burg, J.P., Dawood, H. and Hussain, S. (2007) Petrology and mineral chemistry of lower crustal intrusions: the Chilas Complex, Kohistan (NW Pakistan). Journal of Petrology, 48, 18951953.CrossRefGoogle Scholar
Jasarová, P., Racek, M., Jerabek, P. and Holub, F.V. (2016) Metamorphic reactions and textural changes in coronitic metagabbros from the Tepla Crystalline and Marianske Lazne complexes, Bohemian Massif. Journal of Geosciences, 61, 193219. https://doi.org/10.3190/jgeosci.216CrossRefGoogle Scholar
Jørgensen, T.R., Tinkham, D.K. and Lesher, C.M. (2019) Low-P and high-T metamorphism of basalts: Insights from the Sudbury impact melt sheet aureole and thermodynamic modelling. Journal of Metamorphic Geology, 37, 271313. https://doi.org/10.1111/jmg.12460CrossRefGoogle Scholar
Khedr, M.Z. and Arai, S. (2012) Petrology and geochemistry of prograde deserpentinized peridotites from Happo-O'ne, Japan: Evidence of element mobility during deserpentinization. Journal of Asian Earth Sciences, 43, 150163. https://doi.org/10.1016/j.jseaes.2011.08.017CrossRefGoogle Scholar
Kirkland, C.L., Yakymchuk, C., Hollis, J., Heide-Jørgensen, H. and Danišík, M. (2018) Mesoarchean exhumation of the Akia terrane and a common Neoarchean tectonothermal history for West Greenland. Precambrian Research, 314, 129144. https://doi.org/10.1016/j.precamres.2018.06.00CrossRefGoogle Scholar
Kirkland, C.L., Yakymchuk, C., Gardiner, N.J., Szilas, K., Hollis, J., Olierook, H. and Steenfelt, A. (2020) Titanite petrochronology linked to phase equilibrium modelling constrains tectono-thermal events in the Akia Terrane, West Greenland. Chemical Geology, 536, 119467.CrossRefGoogle Scholar
Klausen, M.B., Kristoffer, S., Kokfelt, T.F., Keulen, N., Schumacher, J.C. and Berger, A. (2017) Tholeiitic to calc-alkaline metavolcanic transition in the Archean Nigerlikasik Supracrustal Belt SW Greenland. Precambrian research, 302, 5073. https://doi.org/10.1016/j.precamres.2017.09.014CrossRefGoogle Scholar
Koziol, A.M. (1989) Recalibration of the garnet-plagioclase-Al2SiO5-quartz (GASP) geobarometer and applications to natural parageneses. Eos, 70, 493.Google Scholar
Koziol, A.M. and Newton, R.C. (1988) Redetermination of the anorthite breakdown reaction and improvement of the plagioclase-garnet-Al2SiO5-quartz geobarometer. American Mineralogist, 73, 216223.Google Scholar
Koziol, A.M. and Newton, R.C. (1989) Grossular activity-composition relationships in ternary garnets determined by reversed displaced-equilibrium experiments. Contributions to Mineralogy and Petrology, 103, 423433. https://doi.org/10.1007/BF01041750CrossRefGoogle Scholar
Kristensen, T. (2006) En geologisk og geokemisk tolkning af mafiske og ultramafiske bjergarter og deres økonomiske mineralpotentiale Fiskefjordsregionen sydlige Vestgrønland (Unpublished M.Sc. thesis), Aarhus University, Denmark.Google Scholar
Le Maitre, R.W., Streckeisen, A., Zanettin, B., Le Bas, M.J., Bonin, B., Bateman, P., Bellieni, G., Dudek, A., Efremova, S., Keller, J. and Lamere, J. (2002) Igneous rocks: a classification and glossary of terms: recommendations of the International Union of Geological Sciences. Subcommission on the Systematics of Igneous rocks, Cambridge University Press, UK.CrossRefGoogle Scholar
Lepage, L.D. (2003) ILMAT: an excel worksheet for ilmenite–magnetite geothermometry and geobarometry. Computers and Geosciences, 29, 673678. https://doi.org/10.1016/S0098-3004(03)00042-6CrossRefGoogle Scholar
Lindsley, D.H. (1983) Pyroxene thermometry. American Mineralogist, 68, 477493.Google Scholar
Locock, A.J. (2014) An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Computers and Geosciences, 62, 111. https://doi.org/10.1016/j.cageo.2013.09.011CrossRefGoogle Scholar
Martin, R.F. (2007) Amphiboles in the igneous environment. Reviews in Mineralogy and Geochemistry, 67(1), 323358. https://doi.org/10.2138/rmg.2007.67.9CrossRefGoogle Scholar
McBirney, A.R. (1996) The Skaergaard intrusion. Pp. 147180 in: Developments in Petrology. Vol. 15. Elsevier. https://doi.org/10.1016/S0167-2894(96)80007-8Google Scholar
McCallum, S. (1996) The Stillwater Complex. Developments in Petrology, 15, 441–48. https://doi.org/10.1016/S0167-2894(96)80015-7CrossRefGoogle Scholar
McIntyre, T., Pearson, D. G., Szilas, K. and Morishita, T. (2019). Implications for the origins of Eoarchean ultramafic rocks of the North Atlantic Craton: a study of the Tussaap Ultramafic complex, Itsaq Gneiss complex, southern West Greenland. Contributions to Mineralogy and Petrology, 174, 96.CrossRefGoogle Scholar
Nilsson, M.K., Söderlund, U., Ernst, R.E., Hamilton, M.A., Scherstén, A. and Armitage, P.E. (2010) Precise U–Pb baddeleyite ages of mafic dykes and intrusions in southern West Greenland and implications for a possible reconstruction with the Superior craton. Precambrian Research, 183, 399415. https://doi.org/10.1016/j.precamres.2010.07.010CrossRefGoogle Scholar
Nishio, I., Morishita, T., Szilas, K., Pearson, G., Tani, K.I., Tamura, A., Harigane, Y. and Guotana, J.M. (2019) Titanian Clinohumite-Bearing Peridotite from the Ulamertoq Ultramafic Body in the 3.0 Ga Akia Terrane of Southern West Greenland. Geosciences, 9, 153. https://doi.org/10.3390/geosciences9040153CrossRefGoogle Scholar
Nozaka, T. (2010) A note on compositional variation of olivine and pyroxene in thermally metamorphosed ultramafic complexes from SW Japan. Okayama University Earth Science Report, 17, 15. http://doi.org/10.18926/ESR/42457Google Scholar
Nutman, A.P. and Friend, C.R. (2007) Adjacent terranes with ca. 2715 and 2650 Ma high-pressure metamorphic assemblages in the Nuuk region of the North Atlantic Craton, southern West Greenland: Complexities of Neoarchaean collisional orogeny. Precambrian Research, 155, 159203.CrossRefGoogle Scholar
Nutman, A.P., Bennett, V.C., Friend, C.R., Yi, K. and Lee, S.R. (2015) Mesoarchaean collision of Kapisilik terrane 3070 Ma juvenile arc rocks and > 3600 Ma Isukasia terrane continental crust (Greenland). Precambrian Research, 258, 146160. https://doi.org/10.1016/j.precamres.2014.12.013CrossRefGoogle Scholar
O'Neill, H.S.C. (1981) The transition between spinel lherzolite and garnet lherzolite, and its use as a geobarometer. Contributions to Mineralogy and Petrology, 77, 185194. https://doi.org/10.1007/BF00636522CrossRefGoogle Scholar
Otten, M.T. (1984) The origin of brown hornblende in the Artfjället gabbro and dolerites. Contributions to Mineralogy and Petrology, 86, 189199. https://doi.org/10.1007/BF00381846CrossRefGoogle Scholar
Owens, B.E. and Dymek, R.F. (1997) Comparative petrology of Archaean anorthosites in amphibolite and granulite facies terranes, SW Greenland. Contributions to Mineralogy and Petrology, 128, 371384. https://doi.org/10.1007/s004100050315CrossRefGoogle Scholar
Page, N.J. and Zientek, M.L. (1987) Composition of primary postcumulus amphibole and phlogopite within an olivine cumulate in the Stillwater Complex, Montana (No. 1674-A). USGPO. https://doi.org/10.3133/b1674AGoogle Scholar
Palin, R.M., White, R.W., Green, E.C., Diener, J.F., Powell, R. and Holland, T.J. (2016) High-grade metamorphism and partial melting of basic and intermediate rocks. Journal of Metamorphic Geology, 34, 871892. https://doi.org/10.1111/jmg.12212CrossRefGoogle Scholar
Perchuk, L.L. (1991) Derivation of a thermodynamically consistent set of geothermometers and geobarometers for metamorphic and magmatic rocks. Pp. 93112 in: Progress in Metamorphic and Magmatic Petrology (Perchuk, L.L., editor). Cambridge University Press, UK.CrossRefGoogle Scholar
Perchuk, L.L. and Lavrent'eva, I.V. (1983) Experimental investigation of exchange equilibria in the system cordierite-garnet-biotite. Pp. 199239 in: Kinetics and Equilibrium in Mineral Reactions. Springer, New York, USA. https://doi.org/10.1007/978-1-4612-5587-1_7CrossRefGoogle Scholar
Perchuk, L.L., Aranovich, L.Y., Podlesskii, K.K., LAvRANT'EvA, I.V., Gerasimov, V.Y., Fed'Kin, V.V., Kitsul, V.I., Karsakov, L.P. and Berdnikov, N.V. (1985) Precambrian granulites of the Aldan shield, eastern Siberia, USSR. Journal of Metamorphic Geology, 3, 265310. https://doi.org/10.1111/j.1525-1314.1985.tb00321.xCrossRefGoogle Scholar
Perchuk, L., Gerya, T. and Nozhkin, A. (1989) Petrology and retrograde P-T path in granulites of the Kanskaya formation, Yenisey range, Eastern Siberia. Journal of Metamorphic Geology, 7, 599617. https://doi.org/10.1111/j.1525-1314.1989.tb00621.xCrossRefGoogle Scholar
Polat, A., Fryer, B.J., Samson, I.M., Weisener, C., Appel, P.W., Frei, R. and Windley, B.F. (2012) Geochemistry of ultramafic rocks and hornblendite veins in the Fiskenæsset layered anorthosite complex, SW Greenland: Evidence for hydrous upper mantle in the Archean. Precambrian Research, 214, 124153. https://doi.org/10.1016/j.precamres.2011.11.013CrossRefGoogle Scholar
Polat, A., Wang, L. and Appel, P.W. (2015) A review of structural patterns and melting processes in the Archean craton of West Greenland: Evidence for crustal growth at convergent plate margins as opposed to non-uniformitarian models. Tectonophysics, 662, 6794. https://doi.org/10.1016/j.tecto.2015.04.006CrossRefGoogle Scholar
Ravenelle, J.F., Weiershäuser, L. and Cole, G. (2017) Updated Independent Technical Report for the Maniitsoq Nickel-Copper-Cobalt-PGM Project, Greenland. Company report by North American Nickel Inc. https://s1.q4cdn.com/725069486/files/doc_downloads/technical_reports/Technical_Report_2017.pdfGoogle Scholar
Reche, J. and Martinez, F.J. (1996) GPT: an Excel spreadsheet for thermobarometric calculations in metapelitic rocks. Computers and Geosciences, 22, 775784. https://doi.org/10.1016/0098-3004(96)00007-6CrossRefGoogle Scholar
Riciputi, L.R., Valley, J.W. and McGregor, V.R. (1990) Conditions of Archean granulite metamorphism in the Godthab-Fiskenaesset region, southern West Greenland. Journal of Metamorphic Geology, 8, 171190. https://doi.org/10.1111/j.1525-1314.1990.tb00464.xCrossRefGoogle Scholar
Robinson, P., Spear, F.S., Schumacher, J.C., Lairdeales, J., Klein’, C., Evans, B.W., and Dollan, B.L. (1982) Phase relations of metamorphic amphiboles: natural occurrence and theory. Pp. 122 in: Amphiboles: Petrology and Experimental Phase Relations (Veblen, D.R. and Ribbe, P.H., editors). Reviews in Mineralogy, 98, Mineralogical Society of America, Washington DC.Google Scholar
Schenk, V. (1984) Petrology of felsic granulites, metapelites, metabasics, ultramafics, and metacarbonates from Southern Calabria (Italy): prograde metamorphism, uplift and cooling of a former lower crust. Journal of Petrology, 25, 255296. https://doi.org/10.1093/petrology/25.1.255CrossRefGoogle Scholar
Scherstén, A. and Garde, A.A. (2013) Complete hydrothermal re-equilibration of zircon in the Maniitsoq structure, West Greenland: A 3001 Ma minimum age of impact Meteoritics and Planetary Science, 48, 14721498. https://doi.org/10.1111/maps.12169CrossRefGoogle Scholar
Schumacher, J.C. (2007) Metamorphic amphiboles: composition and coexistence. Reviews in Mineralogy and Geochemistry, 67, 359416. https://doi.org/10.2138/rmg.2007.67.10CrossRefGoogle Scholar
Sengupta, P., Dasgupta, S., Bhattacharya, P.K. and Mukherjee, M. (1990) An orthopyroxene–biotite geothermometer and its application in crustal granulites and mantle-derived rocks. Journal of metamorphic Geology, 8, 191197. https://doi.org/10.1111/j.1525-1314.1990.tb00465.xCrossRefGoogle Scholar
Spencer, K.J. and Lindsley, D.H. (1981) A solution model for coexisting iron–titanium oxides. American Mineralogist, 66, 11891201.Google Scholar
Stormer, J.C. (1983) The effects of recalculation on estimates of temperature and oxygen fugacity from analyses of multicomponent iron-titanium oxides. American Mineralogist, 68, 586594.Google Scholar
Subramaniam, A.P. (1956) Mineralogy and petrology of the Sittampundi complex Salem district Madras State India. Geological Society of America Bulletin, 67, 317390. https://doi.org/10.1130/0016-7606(1956)67[317:MAPOTS]2.0.CO;2CrossRefGoogle Scholar
Szilas, K. (2018) A geochemical overview of mid-Archaean metavolcanic rocks from southwest Greenland. Geosciences, 8, 266. https://doi.org/10.3390/geosciences8070266CrossRefGoogle Scholar
Szilas, K., Hoffmann, J.E., Scherstén, A., Rosing, M.T., Windley, B.F., Kokfelt, T.F., Keulen, N., van Hinsberg, V.J., Næraa, T., Frei, R. and Münker, C. (2012a) Complex calc-alkaline volcanism recorded in Mesoarchaean supracrustal belts north of Frederikshåb Isblink, southern West Greenland: Implications for subduction zone processes in the early Earth. Precambrian Research, 208, 90123. https://doi.org/10.1016/j.precamres.2012.03.013CrossRefGoogle Scholar
Szilas, K., Næraa, T., Scherstén, A., Stendal, H., Frei, R., van Hinsberg, V.J., Kokfelt, T.F. and Rosing, M.T. (2012b) Origin of Mesoarchaean arc-related rocks with boninite/komatiite affinities from southern West Greenland. Lithos, 144, 2439. https://doi.org/10.1016/j.lithos.2012.03.023CrossRefGoogle Scholar
Szilas, K., Kelemen, P.B. and Bernstein, S. (2015) Peridotite enclaves hosted by Mesoarchaean TTG-suite orthogneisses in the Fiskefjord region of southern West Greenland. GeoResJ, 7, 2234. https://doi.org/10.1016/j.grj.2015.03.003CrossRefGoogle Scholar
Szilas, K., Hoffmann, J. E., Schulz, T., Hansmeier, C., Polat, A., Viehmann, S. and Münker, C. (2016a) Combined bulk-rock Hf-and Nd-isotope compositions of Mesoarchaean metavolcanic rocks from the Ivisaartoq Supracrustal Belt, SW Greenland: Deviations from the mantle array caused by crustal recycling. Geochemistry, 76, 543554.CrossRefGoogle Scholar
Szilas, K., Maher, K. and Bird, D.K., (2016b) Aluminous gneiss derived by weathering of basaltic source rocks in the Neoarchean Storø Supracrustal Belt, southern West Greenland. Chemical Geology, 441, 6380. https://doi.org/10.1016/j.chemgeo.2016.08.013CrossRefGoogle Scholar
Szilas, K., Tusch, J., Hoffmann, J.E., Garde, A.A. and Münker, C. (2017) Hafnium isotope constraints on the origin of Mesoarchaean andesites in southern West Greenland North Atlantic craton. Pp. 1938 in: Crust–Mantle Interactions and Granitoid Diversification: Insights from Archaean Cratons. Geological Society London Special Publications 449, UK. https://doi.org/10.1144/SP449.2Google Scholar
Szilas, K., van Hinsberg, V., McDonald, I., Næraa, T., Rollinson, H., Adetunji, J. and Bird, D. (2018) Highly refractory Archaean peridotite cumulates: Petrology and geochemistry of the Seqi Ultramafic Complex, SW Greenland. Geoscience Frontiers, 9, 689714. https://doi.org/10.1016/j.gsf.2017.05.003CrossRefGoogle Scholar
Thompson, A.B. (1976) Mineral reactions in pelitic rocks. II: Calculation of some PTX (Fe-Mg) phase relations. American Journal of Science, 276, 425454. http://doi/10.2475/ajs.276.4.425CrossRefGoogle Scholar
Tiepolo, M., Oberti, R., Zanetti, A., Vannucci, R. and Foley, S.F. (2007) Trace-element partitioning between amphibole and silicate melt. Pp. 417452 in: Amphiboles: Crystal Chemistry, Occurrence, and Health Issues (Hawthorne, H., Oberti, R., Della Ventura, G. and Mottana, A., editors). Reviews in Mineralogy & Geochemistry, Vol. 67. American Society of Mineralogy and the Geochemical Society, Chantilly, Virginia, USA. https://doi.org/10.2138/rmg.2007.67.11Google Scholar
Tollan, P.M.E., Bindeman, I. and Blundy, J.D. (2012) Cumulate xenoliths from St. Vincent, Lesser Antilles Island Arc: a window into upper crustal differentiation of mantle-derived basalts. Contributions to Mineralogy and Petrology, 163, 189208. https://doi.org/10.1007/s00410-011-0665-9CrossRefGoogle Scholar
Vernon, R.H., White, R.W. and Clarke, G.L. (2008) False metamorphic events inferred from misinterpretation of microstructural evidence and P–T data. Journal of Metamorphic Geology, 26, 437449. https://doi.org/10.1111/j.1525-1314.2008.00762.xCrossRefGoogle Scholar
Wager, L.R., Brown, G.M. and Wadsworth, W.J. 1960. Types of igneous cumulates. Journal of Petrology, 1, 7385. https://doi.org/10.1093/petrology/1.1.73CrossRefGoogle Scholar
Wall, C.J., Scoates, J.S., Weis, D., Friedman, R.M., Amini, M. and Meurer, W.P. (2018) The Stillwater Complex: integrating zircon geochronological and geochemical constraints on the age, emplacement history and crystallization of a large, open-system layered intrusion. Journal of Petrology, 59, 153190. https://doi.org/10.1093/petrology/egy024CrossRefGoogle Scholar
Waterton, P., Hyde, W.R, Tusch, J., Hollis, J.A., Kirkland, C.L., Kinney, C., Yakymchuk, C., Gardiner, N.J., Zakharov, D., Olierook, H.K.H., Münker, C., Lightfoot, P.C. and Szilas, K. (2020) Geodynamic implications of synchronous norite and TTG formation in the 3 Ga Maniitsoq Norite Belt, West Greenland. Frontiers in Earth Science, 8.CrossRefGoogle Scholar
Wells, P.R.A. and Richardson, S.W. (1979) Thermal evolution of metamorphic rocks in the Central Highlands of Scotland. Pp. 339344 in: The Caledonides of the British Isles — Reviewed (Harris, A.L., Holland, C.H. and Leake, B.E., editors). Geological Society, London, Special Publications, 8. https://doi.org/10.1144/GSL.SP.1979.008.01.37Google Scholar
Whitney, D.L. and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185187. https://doi.org/10.2138/am.2010.3371CrossRefGoogle Scholar
Whyatt, L., Peters, S., Pack, A., Kirkland, C.L., Balic-Zunic, T. and Szilas, K. (2020) Metasomatic reactions between Archean dunite and trondhjemite at the Seqi olivine mine in Greenland. Minerals, 10, p.85.CrossRefGoogle Scholar
Williams, M.L. and Grambling, J.A. (1990) Manganese, ferric iron, and the equilibrium between garnet and biotite. American Mineralogist, 75, 886908.Google Scholar
Wones, D.R. and Gilbert, M.C. (1982) Amphiboles in the igneous environment. Amphiboles: Petrology and Experimental Phase Relations (Veblen, D.R. and Ribbe, P.H., editors). Reviews in Mineralogy, 98, Mineralogical Society of America, Washington DC. 355390.CrossRefGoogle Scholar
Yakymchuk, C., Kirkland, C., Hollis, J., Kendrick, J., Gardiner, N. and Szilas, K. (2020) Mesoarchean partial melting of mafic crust and tonalite production during high-T–low-P stagnant tectonism, Akia Terrane, West Greenland. Precambrian Research, 339, 105615.CrossRefGoogle Scholar
Yakymchuk, C. and Szilas, K. (2018) Corundum formation by metasomatic reactions in Archean metapelite, SW Greenland: Exploration vectors for ruby deposits within high-grade greenstone belts. Geoscience Frontiers, 9, 727749. https://doi.org/10.1016/j.gsf.2017.07.008CrossRefGoogle Scholar
Zen, E.A. (1972) Gibbs free energy, enthalpy, and entropy of ten rock-forming minerals: calculations, discrepancies, implications. American Mineralogist, 57, 524553.Google Scholar
Supplementary material: File

Aarestrup et al. supplementary material

Aarestrup et al. supplementary material 1

Download Aarestrup et al. supplementary material(File)
File 720.1 KB
Supplementary material: PDF

Aarestrup et al. supplementary material

Aarestrup et al. supplementary material 2

Download Aarestrup et al. supplementary material(PDF)
PDF 402.2 KB
Supplementary material: PDF

Aarestrup et al. supplementary material

Aarestrup et al. supplementary material 3

Download Aarestrup et al. supplementary material(PDF)
PDF 13.2 MB