Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T14:19:31.468Z Has data issue: false hasContentIssue false

Mauriziodiniite, NH4(As2O3)2I, the ammonium and iodine analogue of lucabindiite from the Torrecillas mine, Iquique Province, Chile

Published online by Cambridge University Press:  26 November 2019

Anthony R. Kampf*
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA90007, USA
Barbara P. Nash
Affiliation:
Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah84112, USA
Arturo A. Molina Donoso
Affiliation:
Los Algarrobos 2986, Iquique, Chile
*
*Author for correspondence: Anthony R. Kampf, Email: [email protected]

Abstract

The new mineral mauriziodiniite (IMA2019-036), NH4(As2O3)2I, was found at the Torrecillas mine, Iquique Province, Chile, where it is a secondary alteration phase associated with calcite, cuatrocapaite-(NH4), lavendulan, magnesiokoritnigite and torrecillasite on matrix consisting of native arsenic, arsenolite and pyrite. Mauriziodiniite occurs as hexagonal tablets up to ~300 μm in diameter. Crystals are colourless and transparent, with pearly to adamantine lustre and white streak. The Mohs hardness is ~1. Tablets are sectile and easily flexible, but not elastic. Fracture is curved, irregular and stepped. Cleavage is perfect on {001}. The calculated density is 3.916 g/cm3. Optically, mauriziodiniite is uniaxial (–) with ω = 2.07(calc) and ɛ = 1.770(5) (white light). The empirical formula, determined from electron microprobe analyses, is (NH4)0.94K0.03(As2O3)2I0.92Cl0.03. Mauriziodiniite is hexagonal, P6/mmm, a = 5.289(2), c = 9.317(2) Å, V = 225.68(18) Å3 and Z = 1. The structure, refined to R1 = 4.16% for 135 Io > 2σI reflections, contains three types of layers: (1) a planar neutral As2O3 (arsenite) sheet; (2) an NH4+ layer that links adjacent arsenite sheets via bonds to their O atoms; and (3) an I layer that links adjacent arsenite sheets via bonds to their As atoms. The layer sequence is I–As2O3–NH4–As2O3–I. Mauriziodiniite is isostructural with lucabindiite and is structurally related to gajardoite, cuatrocapaite-(NH4), cuatrocapaite-(K) and torrecillasite.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Ian T. Graham

References

Bahfenne, S. and Frost, R.L. (2010) A review of the vibrational spectroscopic studies of arsenite, antimonite, and antimonate minerals. Applied Spectroscopy Reviews, 45, 101129.10.1080/05704920903435839CrossRefGoogle Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.10.1107/S0108768190011041CrossRefGoogle Scholar
Buchelt, M. and Tellez, C. (1988) The Jurassic La Negra Formation in the area of Antofagasta, north Chile (lithology, petrography, geochemistry). Pp. 171182 in: The Southern Central Andes (Bahlburg, H., Breitkreuz, C. and Giese, P., editors). Lecture Notes in Earth Sciences 17. Springer, Berlin–Heidelberg–New York.Google Scholar
Cameron, E.M., Leybourne, M.I. and Palacios, C. (2007) Atacamite in the oxide zone of copper deposits in northern Chile: involvement of deep formation waters? Mineralium Deposita, 42, 205218.10.1007/s00126-006-0108-0CrossRefGoogle Scholar
Gagné, O.C. and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Garavelli, A., Mitolo, D., Pinto, D. and Vurro, F. (2013) Lucabindiite, (K,NH4)As4O6(Cl,Br), a new fumarole mineral from the “La Fossa” crater at Vulcano, Aeolian Islands, Italy. American Mineralogist, 98, 470477.10.2138/am.2013.4194CrossRefGoogle Scholar
García, F. (1967) Geologia del Norte Grande de Chile. Simposio Geosinclinal Andino, Sociedad Geológica de Chile Publicaciones, 3, 138 pp.Google Scholar
García-Rodríguez, L., Rute-Pérez, Á., Piñero, J.R., and González-Silgo, C. (2000) Bond-valence parameters for ammonium-anion interactions. Acta Crystallographica, B56, 565569.10.1107/S0108768100002615CrossRefGoogle Scholar
Gutiérrez, H. (1975) Informe Sobre una Rápida Visita a la Mina de Arsénico Nativo, Torrecillas. Instituto de Investigaciones Geológicas, Iquique, Chile.Google Scholar
Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo.Google Scholar
Kampf, A.R., Nash, B.P., Dini, M. and Molina Donoso, A.A. (2013) Magnesiokoritnigite, Mg(AsO3OH)⋅H2O, from the Torrecillas mine, Iquique Province, Chile: the Mg-analogue of koritnigite. Mineralogical Magazine, 77, 30813092.Google Scholar
Kampf, A.R., Nash, B.P., Dini, M. and Molina Donoso, A.A. (2014) Torrecillasite, Na(As,Sb)3+4O6Cl, a new mineral from the Torrecillas mine, Iquique Province, Chile: description and crystal structure. Mineralogical Magazine, 78, 747755.10.1180/minmag.2014.078.3.20CrossRefGoogle Scholar
Kampf, A.R., Nash, B.P., Dini, M. and Molina Donoso, A.A. (2016) Gajardoite, KCa0.5As3+4O6Cl2⋅5H2O, a new mineral related to lucabindiite and torrecillasite from the Torrecillas mine, Iquique Province, Chile. Mineralogical Magazine, 80, 12651272.Google Scholar
Kampf, A.R., Nash, B.P., Dini, M. and Molina Donoso, A.A. (2019a) Camanchacaite, chinchorroite, espadaite, magnesiofluckite, picaite and ríosecoite: six new hydrogen-arsenate minerals from the Torrecillas mine, Iquique Province, Chile. Mineralogical Magazine, 83, 655671.Google Scholar
Kampf, A.R., Chukanov, N.V., Möhn, G., Dini, M., Molina Donoso, A.A. and Friis, H. (2019b) Cuatrocapaite-(NH4) and cuatrocapaite-(K), two new minerals from the Torrecillas mine, Iquique Province, Chile, related to lucabindiite and gajardoite. Mineralogical Magazine, 83, 741748Google Scholar
Kampf, A.R., Nash, B.P. and Molina Donoso, A.A. (2019c) Mauriziodiniite, IMA 2019-036. CNMNC Newsletter, No. 51; Mineralogical Magazine, 83, doi: 10.1180/mgm.2019.58Google Scholar
Mairesse, G., Barbier, P., Wignacourt, J.P., Rubbens, A. and Wallart, F. (1978). X-Ray, Raman, infrared, and nuclear magnetic resonance studies of the crystal structure of ammonium tetrachloroaluminate, NH4AlCl4. Canadian Journal of Chemistry, 56, 764771.Google Scholar
Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting mineral species for further study. The Canadian Mineralogist, 45, 13071324.Google Scholar
Pasero, M. (2020) The New IMA List of Minerals. http://cnmnc.main.jp/Google Scholar
Pertlik, F. (1988) The compounds KAs4O6X (X = Cl, Br, I) and NH4As4O6X (X = Br, I): hydrothermal syntheses and structure determinations. Monatshefte für Chemie, 119, 451456.Google Scholar
Pouchou, J.-L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. Pp. 3175 in: Electron Probe Quantification (Heinrich, K.F.J. and Newbury, D.E., editors). Plenum Press, New York.Google Scholar
Sheldrick, G.M. (2015a) SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica, A71, 38.Google Scholar
Sheldrick, G.M. (2015b) Crystal Structure refinement with SHELX. Acta Crystallographica, C71, 38.Google Scholar
Szymanski, H.A., Marabella, L., Hoke, J. and Harter, J. (1968) Infrared and Raman studies of arsenic compounds. Applied Spectroscopy, 22, 297304.Google Scholar
Supplementary material: File

Kampf et al. supplementary material

Kampf et al. supplementary material

Download Kampf et al. supplementary material(File)
File 56.2 KB